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Abstract: In this paper a new technique is proposed to design an online control algorithm using the Radial
Basis Functions Neural Network (RBFNN). The controller is an RBFNN based direct self-tuning regulator
(STR) that overcomes several shortcomings of the inverse control design using the neural networks. The control
algorithm performs equally good to both minimum phase and non-minimum phase plants. The plant parameters
are estimated online and are used to update the weights of the RBFNN. The weight update equations are derived
based on the well known least mean squares principle. The RBFNN virtually models the inverse of the plant and
thus the output tracks the reference trajectory. The proposed algorithm is successfully verified using simulations
for both minimum and non-minimum phase plants.
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1 Introduction

Adaptive control schemes are used for the control
of plants, where the parameters of the plant are not
known exactly or slowly time varying [1], [2]. Adap-
tive control methods were developed as an attempt to
overcome difficulties connected with the ignorance
of system structure and critical parameter values as
well as changing control regimes [1], [3]. Different
approaches have been adopted to design the adaptive
controllers.

The self-tuning regulator attempts to automate the
tasks involved in the adaptive control scheme namely
modeling, design of a control law, implementation,
and validation. This is illustrated in Fig. 1.

The parameters of the process model are estimated
online by a recursive estimator. The controller design
is performed under the specified conditions along
with selected process parameters needed depending
on the controller type. The controller normally acts
as the plant inverse resulting in producing the desired
output. The alternate to this scheme could be the
adaptive inverse control. In this scheme, the inverse
of the plant is calculated or modelled separately and
then a copy the inverse is cascaded with the actual
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Figure 1: Block diagram of a self-tuning regulator

plant. This is an indirect technique requiring addi-
tional computations and extra blocks in addition to
the note that inverse of a non-minimum phase plant
maybe difficult to handle.

Neural Network (NN) has been used in the con-
troller structures and it has been proven that these
control methods show excellent performance even for
nonlinear plants [4]. Various NN based controllers
for several adaptive and non-adaptive schemes have
been proposed [5, 3, 6, 7, 8]. The methods de-
veloped for neuro-adaptive tracking, neuro-adaptive
model reference control and neuro-self tuning regu-



lators the plant is considered to be minimum phase
which also is a standard assumption in the adaptive
control schemes [10, 11]. NN based controllers have
been proven more robust and fault tolerant compared
to classical adaptive controllers on the cost of slow
learning and more complex structures.

In this paper a new technique is proposed that
overcomes several shortcomings of using the inverse
control and NN. An online control algorithm is struc-
tured using the Radial Basis Functions Neural Net-
work (RBFNN). The plant can be either minimum
phase or non-minimum phase. The plant parame-
ters are estimated online and are used to update the
weights of the RBFNN. The weight update equa-
tions are derived based on the well known least mean
squares principle. The RBFNN virtually models the
inverse of the plant and thus the output tracks the ref-
erence trajectory. This scheme is a direct STR that
estimates the plant parameters and simultaneously in-
corporates them in training the RBFNN, outperform-
ing other indirect approaches. In addition RBFNN is
known to be a better choice among the NNs com-
pared to the multi-layered feedforward neural net-
works that are trained using the back-propagation al-
gorithm. RBFNN bears the same universal approxi-
mation capabilities as of MFNN, despite the fact that
it has only one layer, resulting in a reduced training
time in contrast to the use of back-propagation for
MFNN [9, 10, 11, 12].

2 Proposed Structure

The proposed structure shown in Fig 2 comprises of a
regulator in cascade with the plant and the estimator
block that runs in parallel to the actual process as a
black-box identifier. Auto-regressive moving average
(ARMA) is used to estimate the model of the plant.
The estimates are updated online for any changes in
real-time. RBFNN is used as the reglator and the
weights of the RBFNN are updated based on the pa-
rameters fed by the estimator block. In effect only
the zeroes of the process are needed by the weight
update block to train the RBFNN. The RBFNN thus
adapts itself to act as the inverse of the process.

2.1 Radial Basis Functions Neural Net-
works

A SISO RBFNN is shown in Fig. 3. It consists of
an input node ����, a hidden layer with �� neurons
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Figure 2: Proposed self-tuning regulator structure

and an output node ����. Each of the input node is
connected to all the nodes in the hidden layer through
unity weights (direct connection). While each of the
hidden layer nodes is connected to the output node
through some weights ��� � � � � ��� .
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Figure 3: A general RBF network

Each neuron finds the distance, normally apply-
ing Euclidean norm, between the input and its cen-
tre and passes the resulting scalar through a non-
linearity. So the output of the hidden neuron is given
by ������� � ����, where �� is the number of hidden
layer nodes (neuron), ���� is the input, 	� is the centre
of 
�� hidden layer node where 
 � �� �� � � � � ��, and
���� is the nonlinear basis function. Normally this
function is taken as a Gaussian function of width �.
The output ������ is a weighted sum of the outputs of
the hidden layer, given by
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���� is the output, �� is the weight corresponding to
the �

�� hidden neuron.



2.2 ARMA Model

The plant is modeled by an ARMA model, whose
output is given by
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or in terms of ��� operator
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3 Training Algorithm for the
RBFNN based STR

Considering Fig 2, the objective is to develop a re-
cursive algorithm by which the parameters of the
ARMA model and the weights of the RBFNN can be
adjusted, so that the RBFNN replicates the inverse
of the plant. The training algorithm is developed
based on LMS principle. The parameters (weights of
RBFNN and the coefficients of ARMA) are updated
by minimizing the performance index � given by,

� �
�

�
������

���� � ����� ����� (3)

where ���� is the reference input signal and ���� is
the actual output of the the plant. The coefficients of
the ARMA model and the weights of the RBFNN are
updated in the negative direction of the gradient as,
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and

� �� 	 �� � � ���� �
��

�� ���
� (5)

where � � ��� � � � �� �� � � � ��� is the parameter
vector , � � ��� �� � � � ���� is the weight vec-
tor for RBFNN and � is the learning parameter. The
variable � is used to show the iteration number of
training.

Keeping the regressions of the variables in the
system in a regression vector � as ���� � ���� �
�� � � � ������ ������ � � � ��������� and find-
ing partial derivatives.
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Now, the gradient in Eq. 6 is used to find the up-
dated parameters at �� 	���� instant along with Eq.
4. The final parameter update equation will be,
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The partial derivatives for the weights are derived
as follows,
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This gradient is used to find the weight update
equation, along with Eq. 5,

� �� 	 �� � � ��� 	 � ������������	�����
(8)

The classical control techniques require the can-
cellation of the plant’s poles and zeros, with the
reservation of minimum phase plants only, since can-
celling an unstable zero of a non-minimum phase
plant introduces unstability in the controller itself.
In the proposed technique the inverse of the plant is
not obtained by another filter that might be the un-
stable inverse of the non-minimum phase plant, but



modelled by RBFNN, that only requires the estimate
of the zeroes of the plant. This can also be seen in
the weight update Eq. 8 for the RBFNN. This con-
tributes towards the relaxation of the restriction of
having minimum phase plants only.

4 Simulation Results

The proposed STR structure is tested for both mini-
mum and non-minimum phase plants. The plant pa-
rameters are estimated online and are used to update
the weights for the RBFNN at the same instant.

4.1 Minimum Phase Plant

The minimum phase plant considered is,
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This plant has one zero at �
����
, two poles both
at 0.5 with a unit. A normally distributed additive
noise with a variance of 0.01. A square wave is used
as reference input. The RBFNN is composed of just
2 neurons in the input space with a width � of 0.6.
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Figure 4: Tracking trajectory for the Minimum Phase
system

Fig. 4 shows the efficient response of the RBFNN
to the square input. Fig. 5 shows the error signal
between the reference and the RBFNN output. The
high spikes in this signal show the transition error
at every changing edge, otherwise the error is very
small.
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Figure 5: The error signal

4.2 Non-minimum Phase Plant

In this example a non-minimum phase plant is con-
sidered given by,
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� (10)

This plant has one zero at �� (non-minimum phase),
two poles both at 0.5 with a unit delay. The input
and the noise characteristics are kept the same as in
the example for minimum phase system. The same
RBFNN is used to show the consistency for the min-
imum and non-minimum phase systems.
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Figure 6: Tracking trajectory for the Non-minimum
Phase system

Fig. 6 shows the efficient response of the RBFNN
to the square input. Fig. 7 depicts the error signal in
the reference and the RBFNN output.

4.3 Comparison with a similar technique

The proposed algorithm supersedes the neural net-
work based adaptive inverse control in network size
and training speed that are salient features for the pro-
posed structure. There are only 2 neurons used for
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Figure 7: The error signal

both the examples as compared to the adaptive in-
verse control using MFNN in [13] that uses the net-
work having 4 neurons twice. Although not shown
here but the convergence for RBFNN is also faster
than the traditional multilayered feedforward neural
networks [9].

5 Conclusions

A new method of adaptive control is introduced. The
new method is direct STR type and makes use of the
RBFNN. Training algorithm is developed for the new
STR. The proposed method is a very simple struc-
ture that updates itself online. The exact model of the
plant need not to be known and just the estimates are
enough to drive the RBFNN as the process inverse.
The restrictions for the non-minimum phase and un-
stable plant are relaxed, thus outperforming others of
its kind. Simulation results depict satisfactory track-
ing behaviour for both minimum and non-minimum
phase plants.
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