
Applying Genetic Algorithms To The Dial-A-Ride Problem
With Time Windows

CLAUDIO CUBILLOS F., FRANCO GUIDI-POLANCO AND CLAUDIO DEMARTINI

Dipartimento di Automatica e Informatica
Politecnico di Torino

C.so Duca degli Abruzzi 24, Turin, 10129
ITALY

Abstract: - The Dial-a-ride problem with time windows (DARPTW) assigns and schedules users transport
requests to a fleet of vehicles enabled to fulfill the required service. The literature offers different heuristics for
solving DARPTW problems, which are based on the extension of traditional graph search algorithms. On the
other hand, the approach through Genetic Algorithms (GA) has been experienced in problems of combinatorial
optimization. In this article we present our work and initial results with a framework to develop and test
different GAs in the aim of finding an appropriate encoding and configuration, specifically for the DARPTW
problem.

Key-Words: - Genetic algorithms, DARPTW, Transport systems, Optimization.

1 Introduction
Research in the field of passenger transport planning
systems has received an increasing attention during
last years, due to the congestion and contamination
problems, and the number of accidents generated by
an always increasing number of vehicles in our
cities. As response, new alternatives to satisfy de
transport demands of the citizens are being
conceived [1].

This lead us to the problem of efficiently
managing these transport requests. In literature this
problem is often stated as Dial-a-Ride Problem
(DARP) or Pickup and Delivery Problem (PDP). It
consists in a minimal fleet of vehicles with limited
capacity that must transport a set of clients from an
initial pickup point to a final delivery location.
Normally “Time windows” constraints are added,
which specify the time intervals within which each
client must be picked-up and delivered, generating
the DARPTW (or PDPTW) problem.

The Dial-a-ride problem with time windows can
be seen as a derivation of the Vehicle Routing
Problem with time windows (VRPTW). The
VRPTW has been studied more deeply as it treats a
simpler planning problem; assumes a central depot
for all the vehicles, considers only the picking-up of
goods (not the pickup & delivery), and therefore no
disutility function exists for the transported entities.

Traditional approaches in Dial-a-Ride service
planning are usually implemented as heuristic
procedures that extend basic graph search
algorithms, acting over large collections of data that
describe the entities of the domain problem

(vehicles, service requests, schedules). The most
commercially used transport planning algorithms
correspond to extensions of the solomon’s heuristic
for the VRPTW [15]. An example can be found in
our past research [4], where we implemented a
version of Jaw’s Advanced Dial-A-Ride with Time
Windows (ADARTW) algorithm [8].

2 Related Work
The Vehicle Routing Problem has been investigated
for the past 20. More recent research in the field tries
to include newer techniques to improve the quality
of the obtained solutions. In [11], Li presented a
metaheuristic for the PDPTW. A tabu-search can be
found in [14], implemented for real-life problems
including time-window constraints. Kohout and Erol
[10] showed an agent-based implementation that
uses an stochastic improvement in the final
solutions.

On the other hand, Genetic Algorithms (GA)
have been successfully used as optimizators under
different research domains, including simple route
optimization as in [3]. In the Vehicle Routing
Problem several works can be found. In [2] an
hybrid GA is reported, that combines the genetic
algorithm together with a greedy constructive
heuristic. Thangiah [16] uses a genetic approach for
clustering initial routes. In [9] an hybrid approach
uses a GA together with dynamic programming and
[13] combines GA with tabu-search. In [12], Maeda
uses only GA for the VRP problem but with time

deadlines.
Under some domains, traditional GAs do not

perform well [6]. These are the so called deceptive
problems in which the GA is not able to converge to
a near optimal solutions mainly due to a bad linking
of the building-blocks. Much research can be found
about this linking problem ([5], [6], [7]) and its
possible solutions.

3 Objectives
No relevant work could be found on the dial-a-ride
sub-problem making use of the genetic paradigm.
This can be explained because of the additional
requirements of the dial-a-ride (pickup & delivery
constraints + users’ level of service) and because the
scheduling of clients has taken more followers in the
recent years with the need of Demand Responsive
Transport Systems (DRTS). Another reason can be
found, as it is shown by our results, in the fact that
DARP corresponds to a deceptive problem, so
traditional GAs do not perform well.

For this reason, the aim of this work is not to
develop a genetic algorithm to obtain a universal
optimizer (blackbox optimization). On the contrary,
we pursue the objective of developing a specific GA
encoding for the DARPTW problem and obtain non
deceptive results.

As we have shown above, many works make use
of the GA together with other techniques for
improving the final solution. Others use the GA as a
clusterization technique for the assignment of the
clients to the vehicles but not for the scheduling of
the trips itself.

Our intention is to use the GA for the whole
DARPTW problem, that is, the assignment and
scheduling of the clients, without post-optimization
procedures and to find the best combination of
chromosome’s encoding and evolutionary operators
(selection, crossover and mutation) for the dial-a-
ride problem. For that reason, we have developed a
GA framework that allows us to test several GAs
with different configurations of genetic operators,
chromosome’s encoding and parameters.

4 The Dial-A-Ride Problem
The problem we are treating consists of a set C of
geographically distributed transportation requests,
coming from customers that should be served by a
set of identical vehicles V.

The service can be defined as picking-up the
client from the origin node nsi, and conducting it to a
destination node ndi, where {nsi, ndi}⊂ N, with N the

entire set of nodes that represent the network.
The service must be executed considering a time

window for delivery constraint defined for each
customer, expressed in terms of an earliest delivery
time and a latest delivery time, the pair (edti, ldtf)
with edti<ldti ∀ i∈C. In this a way, a vehicle serving
the customer i must reach ndi, neither not before the
edti time, nor after the ldti time.

Two functions, DRT(N×N) ℜ and
MRT(N×N) ℜ, define the direct ride time
(optimistic time) and the maximum ride time
(pessimistic time) required to reach the node ndj
from nsi ∀ i≠j. Delivery times define a time window
for pick-up, the pair (epti, lptf), where epti=edti-
MRT(Nsi,Ndi) ∧ lpti=edti-DRT(Nsi,Ndi) (see Figure
1).

Fig.1 – Users Time Windows.

In practical terms the customer is supposed to

attend the vehicle at the pick-up point not after the
time epti. Vehicles are not allowed to wait for a
client, so they have to be scheduled to reach the
point nsi for serving the request i not before the time
epti. On the other hand, the passenger has to be
picked-up not after the time lpti otherwise his
request (theoretically) will not be satisfied.

Service requests have to be assigned to Vehicles
and scheduled according to the time restrictions.
There exists no restriction about the minimum
number of passengers to serve, but the maximum
capacity of the vehicles must never be exceeded.

In our model we consider the possibility of a
multi-depot scenario, that is, the vehicle i starts
from the depot DSi and after serving their last clients
they turn back to the depot DFi, where {DSi DFi}∈N.
The objective function pursues the minimization of a
disutility function that considers the fleet operator
(number of vehicles required, fixed and variable
travelling costs) and the served users (effective
waiting time, effective ride time).

5 The GA Framework for DARPTW
We have developed a GA framework for the
assignment and scheduling of customers in the Dial-

Delivery

DRT i
MRT i

t

Time interval accepted
for delivery

ldt i ept
i lpt i

window

DRT i
MRT i

t
iedt

Pick-up
interval

determinated for
Time

a-Ride problem. The GA should tackle the whole
DARPTW problem, so each individual of the
population corresponds to an entire solution of the
problem, that is, a set of vehicles and their routes
that fulfil all customer requests. In our model the
chromosomes evolve tempting to minimize the
fitness function, through a process that finishes
when the evolution reaches a pre-specified number
of generations. The evolution of the chromosomes is
the result of the continuous application of the
genetic operators (selection, reproduction, and
mutation) over the population.

As mentioned earlier, we want to consider in the
GA framework different kinds of genetic operators
and chromosome’s encoding. In particular we are
taking into consideration the following:

a) Genotype: The models for encoding the problem

into a chromosome representation. The idea is to
find the most suitable for the DARPTW problem.

b) Phenotype: The definition of a fitness function
according to the given genotype.

c) Initial population: The procedures for the
construction of the initial population (building
blocks).

d) Selection: Models for the parents selection for
reproduction: tournament, roulette-wheel, etc.

e) Crossover: The different types of crossover
operators: PMX, Edge recombination, cycle
crossover, position crossover, and Merge
crossover.

f) Mutation: Different mutation operators: bit-level
mutation and 2-opt, among others.

6 Implementation
In order to perform the tests with the different
configurations, several procedures have to be
implemented. Up to now we have programmed the
following encodings and genetic operators:

Genotype: For the application of GA to a
problem, is required to model a representation of the
solution in a chromosome. As first encoding we
choose a representation in which the chromosome is
made up of a bus-passenger list, where each bus-
passenger pair corresponds to a gene as shows the
Figure 2. A simple reading template was provided to
decode the chromosome, which consists in
interpreting the first passenger’s occurrence always
as a pick-up, and the second one, always as a
delivery. In this way the chromosome must have
exactly two genes for each passenger, which
determines the length of the chromosome. Note that
these 2 genes associated to a customer

(pickup/delivery) can specify different buses.
Therefore, the bus finally assigned to the customer is
the one specified by the pick-up. The bus
information in the delivery gene is used as a sort of
recessive genetic material useful upon
recombination.

1 21 2 34 2 4 1 12 1 4 3 21 2

11 22

1 12 2 341 21 2 43 21 … 1 4 …

…1 21 2 34 2 4 1 12 1 4 3 21 2

11 22

1 12 2 341 21 2 43 21 … 1

1 21 2 34 2 4 1 12 1 4 3 21 2

11 22

1 12 2 341 21 2 43 21 … 1 4 …

…

Fig.2 – Decoding the chromosome.

Other encodings are considered to be

implemented, like the locus-bus-passenger gene,
that will allow putting the information about the
relative position of the gene in the chromosome
inside the gene itself, enabling the adoption of a
linkage learning model.

Phenotype: In order to evaluate the “quality” of
a chromosome and to decide its reproduction
probability, a fitness function was defined. In the
case of the DARP problem we adopted as fitness
function the disutility function already defined in
Section 2.

Initial Population: The generation of an initial
population that covers the hole problem’s state-
space is crucial for the final performance and
convergence of a given Genetic algorithm. In this
sense, we have implemented two alternative
procedures for the population initialization: the first
is the common random generation of the
chromosome’s genes at bit-level.

The second initialization procedure is based on
an basic insertion heuristic for scheduling the
passengers into the available vehicles. The heuristic
picks one by one the clients from a list and tries to
schedule them in the first possible vehicle. Different
solutions (population’s individuals) are generated by
applying a random ordering to the list of clients and
vehicles each time the insertion heuristic is to be
used.

Selection: Firstly, a tournament selection has
been used to choose the individuals(mates) for
reproduction. It works by choosing a number of ts
(tournament size) individuals from the population in
a random way. Then the individual with the lowest
fitness value is selected (the fitness function in our
case is a cost function, so lower values are better
than higher values). The number of tournaments
applied in a generation depends on the number of
individuals required to reproduce.

Crossover: The reproduction is the operation that
produces a new individual pertaining to a new
generation, due to the combination of the genetic
material of its parents. For the framework we have
already implemented the basic bit-level one-point
crossover and a modified version of the Partial
Match Crossover(PMX).

Mutation: The mutation allows an individual to
slightly change the inherited genetic material. We
have already implemented a bit-level mutation and
the 2-opt operator.

On the other hand, the tests consider the

evaluation of different values for several parameters.
The considered parameters are: Problem size
(number of transport requests), temporal and spatial
distribution of the demands (i.e. uniform, clustered,
mixed), population size, crossover and mutation
probability, together with selection parameters. As
reference we will compare the tests outputs of the
GA model with the results obtained with the
application of ADARTW algorithm [4] for different
problem conditions.

7 Results and Analysis
The GA model was implemented as a parametrizable
C++ program that can be configured to execute
different runs with different treatment for problem
parameters. Firstly, we have implemented a
traditional bit-level GA model with the following
characteristics: bit-string chromosome using the bus-
passenger gene, tournament selection, and bit-level
population initialization, crossover and mutation.
This GA model was unable to solve small problems
(no feasible solution found) of 10 requests.

Then, a second implementation changed the bit-
string by an integer chromosome representation. The
crossover and mutation operators together with the
population initialization procedure were modified to
operate over the integer representation. This GA
behaved well for small request sizes, up to 25
requests. From 30 requests on, the GA was not able
to arrive to any feasible solution. This happened
because the used population initialization step
(random integer generation) produced only
chromosomes with unfeasible solutions. This
happened with population sizes of 50, 100 and 200
chromosomes.

 Another GA implementation was done (the 3rd
one), which included an insertion heuristic for the
population initialization procedure together with the
PMX crossover and 2-opt operator. The introduction
of an insertion heuristic for the population
initialization procedure, allowed to start the GA with

a population with some individuals having feasible
solutions. This allowed us to use the GA with
request sizes bigger than 50 but lower than 100 and
to obtain better results.

A possible explanation of what happened above

can be the fact that in traditional Vehicle Routing
problems is assumed only one depot. Therefore all
the routes start and end on the same depot, allowing
the adoption of certain simplifications when
encoding the routes into the chromosome. On the
contrary, the dial-a-ride problem we are considering
assumes a multi-depot scenario. This, together with
the additional requirements (explained in Section 3),
makes this problem behave like a deceptive one
when using a traditional GA.

Additionally, with this last GA implementation
(the 3rd one), we decided to perform a test varying
some of the parameters. At first view, the GA seems
to work more efficiently and quickly with small
sizes of requests (Under 100). For that reason we
decided to use a small number of requests (5
scenarios of 25 trip requests). In particular we have
performed an initial test of 640 runs, considering the
combination of the following parameters:

 Scenarios: 5 demand scenarios, each with 25 trip

requests distributed uniformly in a two hours
horizon.

 Maximum number of available buses: 25
 Population size: 50 - 100 - 150 - 200

individuals.
 Number of generations: 1.000 and 11.000

generations
 Crossover probability: 0,7 – 0,8 – 0,9 – 1.0
 Mutation probability: 0,0015 and 0,0095
 Tournament size: 50% and 60% of the entire

population.

Table 1 – Comparison of best solutions obtained.

Genetic Algorithm ADARTW
Best solution in

terms of minimum
fitness value

Best solution in
terms of minimum
number of vehicles

Scena-
rio

Fit-
ness

Vehi-
cles

Time
[sec]

Fit-
ness

Vehi-
cles

Time
[sec]

Fit-
ness

Vehi-
cles

Time
[sec]

No-
tes

1 74.7 11 876 103.7 8 393 56.2 9 1 (*)

2 92.6 11 234 125.2 9 1220 9.0 11 1 (*)

3 75.7 9 1013 77.0 7 717 39.8 8 1 (*)

4 85.1 9 930 91.7 8 945 27.8 8 1

5 88.0 9 461 92.5 8 681 42.1 9 1 (*)

(*) Better results in (minimun) number of vehicles given by the GA
program.

 A general conclusion from the analysis of this
first study is that the ADARTW heuristic provides
much better results than the implemented GA model,
in terms of the fitness function value. However, in
terms of the number of required vehicles the GA
model has produced better results than the heuristic
in 4 of the five scenarios with 25 trip requests. Table
1 summarizes the bests solutions obtained by the GA
model in terms of the fitness value, and in terms of
number of vehicles.

Fig.3 – Fitness value versus population size for two
generation sizes (1.000 and 11.000 generations).

Figure 3 shows the tendency observed on the

fitness function when the population size increases.
Better results are given for bigger population sizes,
and this can be explained because a bigger
population size allows to examine a larger portion of
the solutions space on each generation. On the same
graphic can be observed that a bigger number of
generations allows to obtain better results for the
fitness function, independently from the considered
population sizes.

Fig.4 – Number of vehicles versus population for
two generation sizes (1.000 and 11.000 generations)

On the other hand, Figure 4 shows that the search
for the optimum number of vehicles produce better
results with large number of generations, and good
results can be obtained even in the case of relatively
small population sizes.

Fig. 5 – Fitness function versus mutation probability
for different crossover probabilities (0,7 – 0,8 – 0,9

– 1,0).

Figure 5 shows the influence of the mutation

probability in the value obtained for the fitness
function. The graphic shows that independently from
the evaluated crossover probability values, the
higher mutation probability produces the lower
fitness value (cost). In the same graphic can be
appreciated that the implemented model doesn’t
produce significant differences of fitness function
values when varying the crossover probability and
the mutation probability is low, but this seems to
multiply the effect in a non predictable way when
the mutation probability is higher.

8 Conclusions
Our research aimed to determine the conditions in
which GA can be an useful approach to deal with
Dial-a-Ride problems. We have tested an initial
configuration with a bit-string chromosome,
tournament selection, and bit-level population
initialization, crossover and mutation. It clearly
performed poorly, being almost always unable to
arrive to a feasible solution. Then, an integer
representation was adopted for the bus-passenger
gene, noticing an immediate improvement.

Afterwards, the PMX crossover and 2-opt were
included together with an insertion heuristic for the
population initialization, resulting in even better
behaviour and results. These solutions were
comparable to the ones obtained using the

8,8
9,0
9,2
9,4
9,6
9,8

10,0
10,2
10,4
10,6

50 100 150 200

Population size

Re
qu

ire
d

ve
hi

cl
es

(m

ea
n)

1000 11000

96

98

100

102

104

106

108

110

0,0015 0,0095

Mutation probability
Fi

tn
es

s
m

ea
n

0,7 0,8 0,9 1

85

90

95

100

105

110

115

120

50 100 150 200

Population size

Fi
tn

es
s

m
ea

n

1000 11000

ADARTW algorithm implementation[4] in relation
with the number of used vehicles but not with
respect to the value of the fitness (disutility)
function.

9 Future Work
The idea is to continue the implementation of the
other genetic operators and specially the locus-bus-
passenger gene encoding to then adapt and
implement a linkage learning module as the one
presented by Harik [7].

With this modifications we will be able to obtain
better results in terms of the solutions’ disutility
function and to use the genetic algorithm with bigger
problem sizes over 100 clients.

References:
[1] Ambrosino, G. et al, EBusiness Applications to

Flexible Transport and Mobility Services. 2001.
Available online at:
http://citeseer.nj.nec.com/ambrosino01ebusiness
.html.

[2] Blanton, J; Wainwright, R. Multiple Vehicle
Routing with Time and Capacity constraints
Using Genetic Algorithms. In Proc. of the 5th
International Conference on Genetic
Algorithms. 1:452-459, 1993.

[3] Chang Wook, A.; Ramakrishna, R.S. A Genetic
Algorithm For Shortest Path Routing Problem
And The Sizing Of Populations. In IEEE
Transactions on Evolutionary Computation,
Vol. 6, No. 6, 2002, pp. 566 -579.

[4] Cubillos, C. et al. On user requirements and
operator purposes in Dial-a-Ride services.
Proceedings of the 9th Meeting of the EURO
Working Group on Transportation. 2002, pp.
677-684.

[5] Goldberg, D. et al. Toward a Better
Understanding Of Mixing in Genetic
Algorithms. J. Soc. Instrument and Control
Engineers. Vol. 32, No 1, pp. 10-16, 1993.

[6] Harik, G. Learning Gene Linkage to Efficiently
Solve Problems of Bounded Difficulty Using
Genetic Algorithms. PhD Thesis. University of
Michigan. 1997.

[7] Harik, G; Goldberg, D.E. Learning Linkage. In
foundations of Genetic Algorithms. Vol. 4,
1997, pp. 247-262.

[8] Jaw, J. et al. A heuristic algorithm for the
multiple-vehicle advance request dial-a-ride
problem with time windows. Transportation
Research. Vol. 20B, No 3, 1986, pp. 243-257.

[9] Jih, W; Hsu, J. Dynamic Vehicle Routing using
Hybrid Genetic Algorithms. In Proc. Of the
IEEE Int. Conf. on robotics & Automation.
Detroit, May, 1999.

[10] Kohout, R; Erol, K. Robert C. In-Time Agent-
Based Vehicle Routing with a Stochastic
Improvement Heuristic. In Proc. Of the
AAAI/IAAI Int. Conf. Orlando, Florida, 1999,
pp. 864-869.

[11] Li, H; Lim, A. A Metaheuristic for the Pickup
and Delivery problem with Time Windows. In
13th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI'01). Texas,
November, 2001.

[12] Maeda, O. et al. A Genetic Algorithm Approach
to Vehicle Routing Problem with Time
Deadlines in Geographical Information
Systems. Presented at the IEEE International
Conference on Systems, Man, and Cybernetics.
Vol.II, Tokyo, Oct. 1999, pp.595-600.

[13] Ombuki, O. et al. A Hybrid Search Based on
Genetic Algorithms and Tabu Search for
Vehicle Routing. Presented at the 6th IASTED
International Conference on Artificial
Intelligence and Soft Computing. Banff,
Canada, July 2002, pp. 176-181.

[14] Rochat, Y; Semet, F. A Tabu Search Approach
for delivering Pet food and flour in Switzerland.
Journal of Operation Research Society. 1:1233-
1246, 1994.

[15] Solomon, M. Algorithms For The Vehicle
Routing And Scheduling Problems With Time
Window Constraints. Operations Research, No.
35. 1987, pp. 254-265.

[16] Thangiah, S. Vehicle Routing with Time
Windows using Genetic Algorithms.
Application Handbook of Genetic Algorithm:
New Frontier, 2:253-277, 1995.

