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Abstract: - The Dial-a-ride problem with time windows (DARPTW) assigns and schedules users transport 
requests to a fleet of vehicles enabled to fulfill the required service. The literature offers different heuristics for 
solving DARPTW problems, which are based on the extension of traditional graph search algorithms. On the 
other hand, the approach through Genetic Algorithms (GA) has been experienced in problems of combinatorial 
optimization. In this article we present our work and initial results with a framework to develop and test 
different GAs in the aim of finding an appropriate encoding and configuration, specifically for the DARPTW 
problem. 
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1 Introduction 
Research in the field of passenger transport planning 
systems has received an increasing attention during 
last years, due to the congestion and contamination 
problems, and the number of accidents generated by 
an always increasing number of vehicles in our 
cities. As response, new alternatives to satisfy de 
transport demands of the citizens are being 
conceived [1].  

This lead us to the problem of efficiently 
managing these transport requests. In literature this 
problem is often stated as Dial-a-Ride Problem 
(DARP) or Pickup and Delivery Problem (PDP). It 
consists in a minimal fleet of vehicles with limited 
capacity that must transport a set of clients from an 
initial pickup point to a final delivery location. 
Normally “Time windows” constraints are added, 
which specify the time intervals within which each 
client must be picked-up and delivered, generating 
the DARPTW (or PDPTW) problem.   

The Dial-a-ride problem with time windows can 
be seen as a derivation of the Vehicle Routing 
Problem with time windows (VRPTW). The 
VRPTW has been studied more deeply as it treats a 
simpler planning problem;  assumes a central depot 
for all the vehicles, considers only the picking-up of 
goods (not the pickup & delivery), and therefore no 
disutility function exists for the transported entities. 

Traditional approaches in Dial-a-Ride service 
planning are usually implemented as heuristic 
procedures that extend basic graph search 
algorithms, acting over large collections of data that 
describe the entities of the domain problem 

(vehicles, service requests, schedules). The most 
commercially used transport planning algorithms 
correspond to extensions of the solomon’s heuristic 
for the VRPTW [15]. An example can be found in 
our past research [4], where we implemented a 
version of Jaw’s Advanced Dial-A-Ride with Time 
Windows (ADARTW) algorithm [8]. 

 
 

2 Related Work 
The Vehicle Routing Problem has been investigated 
for the past 20. More recent research in the field tries 
to include newer techniques to improve the quality 
of the obtained solutions. In [11], Li presented a 
metaheuristic for the PDPTW. A tabu-search can be 
found in [14], implemented for real-life problems 
including time-window constraints. Kohout and Erol 
[10] showed an agent-based implementation that 
uses an stochastic improvement in the final 
solutions.  
 

On the other hand, Genetic Algorithms (GA) 
have been successfully used as optimizators under 
different research domains, including simple route 
optimization as in [3]. In the Vehicle Routing 
Problem several works can be found. In [2] an 
hybrid GA is reported, that combines the genetic 
algorithm together with a greedy constructive 
heuristic.  Thangiah [16] uses a genetic approach for 
clustering initial routes. In [9] an hybrid approach 
uses a GA together with dynamic programming and 
[13] combines GA with tabu-search. In [12], Maeda 
uses only GA for the VRP problem but with time 



deadlines.    
Under some domains, traditional GAs do not 

perform well [6]. These are the so called deceptive 
problems in which the GA is not able to converge to 
a near optimal solutions mainly due to a bad linking 
of the building-blocks. Much research can be found 
about this linking problem ([5], [6], [7]) and its 
possible solutions.  

 
 

3 Objectives 
No relevant work could be found on the dial-a-ride 
sub-problem making use of the genetic paradigm. 
This can be explained because of the additional 
requirements of the dial-a-ride (pickup & delivery 
constraints + users’ level of service) and because the 
scheduling of clients has taken more followers in the 
recent years with the need of Demand Responsive 
Transport Systems (DRTS). Another reason can be 
found, as it is shown by our results, in the fact that 
DARP corresponds to a deceptive problem, so 
traditional GAs do not perform well.   

For this reason, the aim of this work is not to 
develop a genetic algorithm to obtain a universal 
optimizer (blackbox optimization). On the contrary, 
we pursue the objective of developing a specific GA 
encoding for the DARPTW problem and obtain non 
deceptive results.  

As we have shown above, many works make use 
of the GA together with other techniques for 
improving the final solution. Others use the GA as a 
clusterization technique for the assignment of the 
clients to the vehicles but not for the scheduling of 
the trips itself.  

Our intention is to use the GA for the whole 
DARPTW problem, that is, the assignment and 
scheduling of the clients, without post-optimization 
procedures and to find the best combination of 
chromosome’s encoding and evolutionary operators 
(selection, crossover and mutation) for the dial-a-
ride problem. For that reason, we have developed a 
GA framework that allows us to test several GAs 
with different configurations of genetic operators, 
chromosome’s encoding and parameters.     

 
 

4 The Dial-A-Ride Problem 
The problem we are treating consists of a set C of 
geographically distributed transportation requests, 
coming from customers that should be served by a 
set of identical vehicles V. 

The service can be defined as picking-up the 
client from the origin node nsi, and conducting it to a 
destination node ndi, where {nsi, ndi}⊂ N, with N the 

entire set of nodes that represent the network.  
The service must be executed considering a time 

window for delivery constraint defined for each 
customer, expressed in terms of an earliest delivery 
time and a latest delivery time, the pair (edti, ldtf) 
with edti<ldti ∀ i∈C. In this a way, a vehicle serving 
the customer i must reach ndi, neither not before the 
edti  time, nor after the ldti time.  

Two functions, DRT(N×N) ℜ and 
MRT(N×N) ℜ, define the direct ride time 
(optimistic time) and the maximum ride time 
(pessimistic time) required to reach the node ndj 
from nsi ∀ i≠j. Delivery times define a time window 
for pick-up, the pair (epti, lptf), where epti=edti-
MRT(Nsi,Ndi) ∧ lpti=edti-DRT(Nsi,Ndi) (see Figure 
1).  

 

 
Fig.1 – Users Time Windows. 

 
In practical terms the customer is supposed to 

attend the vehicle at the pick-up point not after the 
time epti. Vehicles are not allowed to wait for a 
client, so they have to be scheduled to reach the 
point nsi for serving the request i not before the time 
epti. On the other hand, the passenger has to be 
picked-up not after the time lpti otherwise his 
request (theoretically) will not be satisfied. 

Service requests have to be assigned to Vehicles 
and scheduled according to the time restrictions.  
There exists no restriction about the minimum 
number of passengers to serve, but the maximum 
capacity of the vehicles must never be exceeded.  

In our model we consider the possibility of a 
multi-depot scenario, that is,  the vehicle i starts 
from the depot DSi and after serving their last clients 
they turn back to the depot DFi, where {DSi DFi}∈N. 
The objective function pursues the minimization of a 
disutility function that considers the fleet operator 
(number of vehicles required, fixed and variable 
travelling costs) and the served users (effective 
waiting time, effective ride time). 

 
 

5 The GA Framework for DARPTW 
We have developed a GA framework for the 
assignment and scheduling of customers in the Dial-
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a-Ride problem. The GA should tackle the whole 
DARPTW problem, so each individual of the 
population corresponds to an entire solution of the 
problem, that is, a set of vehicles and their routes 
that fulfil all customer requests. In our model the 
chromosomes evolve tempting to minimize the 
fitness function, through a process that finishes 
when the evolution reaches a pre-specified number 
of generations. The evolution of the chromosomes is 
the result of the continuous application of the 
genetic operators (selection, reproduction, and 
mutation) over the population.  

As mentioned earlier, we want to consider in the 
GA framework different kinds of genetic operators 
and chromosome’s encoding. In particular we are 
taking into consideration the following: 

 
a) Genotype: The models for encoding the problem 

into a chromosome representation. The idea is to 
find the most suitable for the DARPTW problem. 

b) Phenotype: The definition of a fitness function 
according to the given genotype.  

c) Initial population: The procedures for the 
construction of the initial population (building 
blocks). 

d) Selection: Models for the parents selection for 
reproduction: tournament, roulette-wheel, etc.  

e) Crossover: The different types of crossover 
operators: PMX, Edge recombination, cycle 
crossover, position crossover, and Merge 
crossover.  

f) Mutation:  Different mutation operators: bit-level 
mutation and 2-opt, among others. 
 
 

6 Implementation 
In order to perform the tests with the different 
configurations, several procedures have to be 
implemented. Up to now we have programmed the 
following  encodings and genetic operators:  
 

Genotype: For the application of GA to a 
problem, is required to model a representation of the 
solution in a chromosome. As first encoding we 
choose a representation in which the chromosome is 
made up of a bus-passenger list, where each bus-
passenger pair corresponds to a gene as shows the 
Figure 2. A simple reading template was provided to 
decode the chromosome, which consists in 
interpreting the first passenger’s occurrence always 
as a pick-up, and the second one, always as a 
delivery. In this way the chromosome must have 
exactly two genes for each passenger, which 
determines the length of the chromosome. Note that 
these 2 genes associated to a customer 

(pickup/delivery) can specify different buses. 
Therefore, the bus finally assigned to the customer is 
the one specified by the pick-up. The bus 
information in the delivery gene is used as a sort of 
recessive genetic material useful upon 
recombination.  

 
1 21 2 34 2 4 1 12 1 4 3 21 2

11 22

1 12 2 341 21 2 43 21 … 1 4 …

…1 21 2 34 2 4 1 12 1 4 3 21 2

11 22

1 12 2 341 21 2 43 21 … 1

1 21 2 34 2 4 1 12 1 4 3 21 2

11 22

1 12 2 341 21 2 43 21 … 1 4 …

…

 
Fig.2 – Decoding the chromosome. 

 
Other encodings are considered to be 

implemented, like the locus-bus-passenger gene, 
that will allow putting the information about the 
relative position of the gene in the chromosome 
inside the gene itself, enabling the adoption of a 
linkage learning model. 

Phenotype: In order to evaluate the “quality” of 
a chromosome and to decide its reproduction 
probability, a fitness function was defined. In the 
case of the DARP problem we adopted as fitness 
function the disutility function already defined in 
Section 2. 

Initial Population: The generation of an initial 
population that covers the hole problem’s state-
space is crucial for the final performance and 
convergence of a given Genetic algorithm. In this 
sense, we have implemented two alternative 
procedures for the population initialization: the first 
is the common random generation of  the 
chromosome’s genes at bit-level. 

The second initialization procedure is based on 
an basic insertion heuristic for scheduling the 
passengers into the available vehicles. The heuristic 
picks one by one the clients from a list and tries to 
schedule them in the first possible vehicle. Different 
solutions (population’s individuals) are generated by 
applying a random ordering to the list of clients and 
vehicles each time the insertion heuristic is to be 
used.   

Selection: Firstly, a tournament selection has 
been used to choose the individuals(mates) for 
reproduction. It works by choosing a number of ts 
(tournament size) individuals from the population in 
a random way. Then the individual with the lowest 
fitness value is selected (the fitness function in our 
case is a cost function, so lower values are better 
than higher values). The number of tournaments 
applied in a generation depends on the number of 
individuals required to reproduce.  



Crossover: The reproduction is the operation that 
produces a new individual pertaining to a new 
generation, due to the combination of the genetic 
material of its parents. For the framework we have 
already implemented the basic bit-level one-point 
crossover and a modified version of the Partial 
Match Crossover(PMX). 

Mutation: The mutation allows an individual to 
slightly change the inherited genetic material. We 
have already implemented a bit-level mutation and 
the 2-opt operator. 

 
On the other hand, the tests consider the 

evaluation of different values for several parameters. 
The considered parameters are: Problem size 
(number of transport requests), temporal and spatial 
distribution of  the demands (i.e. uniform, clustered, 
mixed), population size, crossover and mutation 
probability, together with selection parameters. As 
reference we will compare the tests outputs of the 
GA model with the results obtained with the 
application of ADARTW algorithm [4] for different 
problem conditions. 
 
 
7 Results and Analysis 
The GA model was implemented as a parametrizable 
C++ program that can be configured to execute 
different runs with different treatment for problem 
parameters. Firstly, we have implemented a 
traditional bit-level GA model with the following 
characteristics: bit-string chromosome using the bus-
passenger gene, tournament selection, and bit-level 
population initialization, crossover and mutation. 
This GA model was unable to solve small problems 
(no feasible solution found) of 10 requests.  

Then, a second implementation changed the bit-
string by an integer chromosome representation. The 
crossover and mutation operators together with the 
population  initialization procedure were modified to 
operate over the integer representation. This GA 
behaved well for small request sizes, up to 25 
requests. From 30 requests on, the GA was not able 
to arrive to any feasible solution. This happened 
because the used population initialization step 
(random integer generation) produced only 
chromosomes with unfeasible solutions. This 
happened with population sizes of 50, 100 and 200 
chromosomes.  

 Another GA implementation was done (the 3rd 
one), which included an insertion heuristic for the 
population initialization procedure together with  the 
PMX crossover and 2-opt operator. The introduction 
of an insertion heuristic for the population 
initialization procedure, allowed to start the GA with 

a population with some individuals having feasible 
solutions. This allowed us to use the GA with 
request sizes bigger than 50 but lower than 100 and 
to obtain better results.  

 
A possible explanation of what happened above 

can be the fact that in traditional Vehicle Routing 
problems is assumed only one depot. Therefore all 
the routes start and end on the same depot, allowing 
the adoption of certain simplifications when 
encoding the routes into the chromosome. On the 
contrary, the dial-a-ride problem we are considering 
assumes a multi-depot scenario. This, together with 
the additional requirements (explained in Section 3), 
makes this problem behave like a deceptive one 
when using a traditional GA. 

Additionally, with this last GA implementation 
(the 3rd one), we decided to perform a test varying 
some of the parameters. At first view, the GA seems 
to work more efficiently and quickly with small 
sizes of requests (Under 100). For that reason we 
decided to use a small number of requests (5 
scenarios of 25 trip requests). In particular we have 
performed an initial test of 640 runs, considering the 
combination of the following parameters: 

 
 Scenarios: 5 demand scenarios, each with 25 trip 

requests distributed uniformly in a two hours 
horizon. 

 Maximum number of available buses: 25 
 Population size: 50 -  100 -  150 -  200 

individuals. 
 Number of generations: 1.000 and 11.000 

generations 
 Crossover probability: 0,7 – 0,8 – 0,9 – 1.0   
 Mutation probability: 0,0015 and 0,0095 
 Tournament size: 50% and 60% of the entire 

population. 
 
 

Table 1 – Comparison of best solutions obtained.  

 
 

Genetic Algorithm ADARTW 
Best solution in 

terms of minimum 
fitness value 

Best solution in 
terms of minimum 
number of vehicles 

Scena-
rio 

Fit-
ness 

Vehi-
cles

Time
[sec]

Fit-
ness 

Vehi-
cles 

Time 
[sec] 

Fit-
ness 

Vehi-
cles 

Time
[sec]

No-
tes

1 74.7 11 876 103.7 8 393 56.2 9 1 (*)

2 92.6 11 234 125.2 9 1220 9.0 11 1 (*)

3 75.7 9 1013 77.0 7 717 39.8 8 1 (*)

4 85.1 9 930 91.7 8 945 27.8 8 1  

5 88.0 9 461 92.5 8 681 42.1 9 1 (*)

(*) Better results in (minimun) number of vehicles given by the GA 
program. 



 A general conclusion from the analysis of this 
first study is that the ADARTW heuristic provides 
much better results than the implemented GA model, 
in terms of the fitness function value. However, in 
terms of the number of required vehicles the GA 
model has produced better results than the heuristic 
in 4 of the five scenarios with 25 trip requests. Table 
1 summarizes the bests solutions obtained by the GA 
model in terms of the fitness value, and in terms of 
number of vehicles. 

Fig.3 – Fitness value versus population size for two 
generation sizes (1.000 and 11.000 generations). 
 
Figure 3 shows the tendency observed on the 

fitness function when the population size increases. 
Better results are given for bigger population sizes, 
and this can be explained because a bigger 
population size allows to examine a larger portion of 
the solutions space on each generation. On the same 
graphic can be observed that a bigger number of 
generations allows to obtain better results for the 
fitness function, independently from the considered 
population sizes. 

Fig.4 – Number of vehicles versus population for 
two generation sizes (1.000 and 11.000 generations) 

 

On the other hand, Figure 4 shows that the search 
for the optimum number of vehicles produce better 
results with large number of generations, and good 
results can be obtained even in the case of relatively 
small population sizes. 

Fig. 5 – Fitness function versus mutation probability 
for different crossover probabilities (0,7 – 0,8 – 0,9 

– 1,0). 
 
Figure 5 shows the influence of the mutation 

probability in the value obtained for the fitness 
function. The graphic shows that independently from 
the evaluated crossover probability values, the 
higher mutation probability produces the lower 
fitness value (cost). In the same graphic can be 
appreciated that the implemented model doesn’t 
produce significant differences of fitness function 
values when varying the crossover probability and 
the mutation probability is low, but this seems to 
multiply the effect in a non predictable way when 
the mutation probability is higher. 

 
 

8 Conclusions 
Our research aimed to determine the conditions in 
which GA can be an useful approach to deal with 
Dial-a-Ride problems. We have tested an initial 
configuration with a bit-string chromosome, 
tournament selection, and bit-level population 
initialization, crossover and mutation. It clearly 
performed poorly, being almost always unable to 
arrive to a feasible solution. Then, an integer 
representation was adopted for the bus-passenger 
gene, noticing an immediate improvement. 

Afterwards, the PMX crossover and 2-opt were 
included together with an insertion heuristic for the 
population initialization, resulting in even better 
behaviour and results. These solutions were 
comparable to the ones obtained using the 
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ADARTW algorithm implementation[4] in relation 
with the number of used vehicles but not with 
respect to the value of the fitness (disutility) 
function. 

 
 

9 Future Work 
The idea is to continue the implementation of the 
other genetic operators and specially the locus-bus-
passenger gene encoding to then adapt and 
implement a linkage learning module as the one 
presented by Harik [7].  

With this modifications we will be able to obtain 
better results in terms of the solutions’ disutility 
function and to use the genetic algorithm with bigger 
problem sizes over 100 clients.  
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