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ABSTRACT

Motion estimation is a very important problem in dy-
namic scene analysis. Although it is easier to estimate
motion parameters from 3D data than from 2D images,
it is not trivial since the 3D data we have are almost
always corrupted by noise. We address the problem of
computing the three-dimensional motions of objects.
This paper proposes a robust approach to position esti-
mation of moving objects by exploiting the only avail-
able geometric constraint, namely, the epipolar con-
straint. The extrinsic parameters of the camera and
the motion of the stereo rig is unknown. If we make an
exhaustive search for the epipolar geometry, the com-
plexity is prohibitively high. The idea underlying our
approach is to use a parallel fine-grain GA as an opti-
mizer. Since the constraint on the rotation matrix is
not fully exploited in the analytical method, nonlinear
minimization can be used to improve the result.

keywords : parallel genetic algorithms, butter-
fly network, epipolar geometry, fine-grain GA, position
estimation, fundamental matrix

1 Introduction

Evolutionary algorithms have gained a growing pop-
ularity in solving many complex problems from vari-
ous application fields[1]. Considering image process-
ing, which requires robust and fast techniques capa-
ble of managing large and noisy data, it would seem
that genetic algorithms (GAs) are well suited and they
have been successfully applied to various field of image
processing[2].

Estimating the position of a moving object remains
one of the bottlenecks in computer vision. A large
number of work has been carried out, however the
results are not satisfactory. The only geometric con-
straint we know between two images of a single object
is epipolar constraint. However, when the motion be-
tween two images is not known, the epipolar geometry
is also unknown. The methods reported in the litera-
ture all exploit some heuristics in one form or another,

which are not general and can not be applied for all
cases.

The classical approach to motion and structure esti-
mation problem from two perspective projections con-
sists of two stages: (i) using the 8-point algorithm to
estimate the 9 essential parameters defined up to a
scale factor, which is a linear estimation problem; (ii)
refining the motion estimation based on some statisti-
cally optimal criteria, which is a nonlinear estimation
problem on a five-dimensional space. Unfortunately,
the results obtained using this approach are often not
satisfactory, especially when the motion is small or
when the observed points are close to a degenerate sur-
face (e.g. plane). The problem is that the second stage
is very sensitive to the initial guess, and that it is very
difficult to obtain a precise initial estimate from the
first stage. This is because we perform a projection of
a set of quantities which are estimated in a space of
8 dimensions, much higher than that of the real space
which is five-dimensional.

We propose in this paper a novel approach by in-
troducing a method which applies a fine-grained par-
allel GA based on ”Butterfly” topology. The algo-
rithm deals with several subpopulations distributed
in the butterfly network, which leads to overcoming
the problem of premature convergence. The “But-
terfly” is one of the most versatile and efficient net-
works yet discovered for parallel computation. Mas-
sive communications capability of the butterfly pro-
vides a way to disseminate good solutions across the
entire population[3].

The organization of the paper is as follows: we be-
gin with a brief review of the epipolar geometry. The
simulated system along with its optical and geomet-
rical parameters is then introduced, followed by a de-
scription of our fine-grain parallel GA and our mea-
sures. A pilot study performed to assess the effective-
ness of the algorithm is then discussed. Finally, we
present some tentative conclusions and recommenda-
tions for further study.



Figure 1: The epipolar geometry

2 Epipolar Geometry

Considering the case of two cameras as shown in Fig.
1. Let C7 and C5 be the optical centers of the first and
second cameras, respectively. Given a point m; in the
first image, its corresponding point in the second image
is constrained to lie on a line called the epipolar line
of m1, denoted by [,,,. the line ,,, is the intersection
of the plane 11, defined by my, Ci and Cy(known as
the epipolar plane), with the second image plane I5.
This is because image point m; may correspond to an
arbitrary point on the semi-line C; M (M may be at
infinity) and that the projection of C1 M on I is the
line I, .

The corresponding point in the first image of each
point myy, lying on l,,,, must lie on the epipolar line
lma,, Which is the intersection of the same plane IT*
with the first image plane I;. All epipolar lines form
a pencil containing the epipole e;, which is the inter-
section of the line C1Cs with the image plane I;. The
symmetry leads to the following observation. if m; (
a point in I1) and my ( a point in I) correspond to a
single physical point M in space, then my, ms , C; and
C5 must lie in a single plane. This is the well-known
co-planarity constraint or epipolar equation in solving
motion and structure from motion problems when the
intrinsic parameters of the cameras are known.

Let the displacement from the first camera to the
second be (R, t). Let m; and ma be the images of a 3-d
point M on the cameras . Without loss of generality,
we assume that M is expressed in the coordinate frame
of the first camera. Under the pinhole model, we have

the following two equations:

sy = A1[I 0] [IM]

samity = Az[R 1] [MI]

where A; and A, are the intrinsic matrices of the first
and second cameras, respectively. Eliminating M, s;
and s from the above equations, we obtain the follow-
ing fundamental equation

mI A;TTRAT ", = 0, (1)

which is another form of epipolar equation. T stands
for an antisymmetric matrix defined by ¢ such that
Tz =t Az for all 3-D vector z ( A denotes the cross
product).

Equation (1) is a fundamental constraint underly-
ing any two images if they are perspective projections
of one and the same scene. Let F' = A; TTRA!, Fis
known as the fundamental matrix of the two images.
It has only seven degrees of freedom. Indeed, it is only
defined up to a scale factor and its determinant is zero.
Geometrically, F'iny defines the epipolar line of point
my in the second image.

It can be shown that the fundamental matrix F' is
related to the essential matrix

by
F=A;TEAT".



It is thus clear that if the camera are calibrated, the
problem becomes the one of motion and structure from
motion[4].

3 Geometric Model

We present a method to recover the epipolar geometry
between two images from point matches. The intrinsic
parameters of the camera are known and therefore the
problem is determining the motion. The two images
are taken by a fixed camera at two different time in-
stants in a dynamic scene. We assume that the two im-
ages are projections of a single moving non deformable
object.

Let a point m; = [ui,v;]T in the first image be
matched to a point m} = [u},v}]T in the second im-
age. They must satisfy the epipolar equation, i.e.
m? Fm/ = 0. Since a fundamental matrix F has only 7
degrees of freedom, 7 is the minimum number of point
matches required for having a solution of the epipo-
lar geometry. In practice, we are given more than 7
matches and we may try to find F' by minimizing :

S ! Py

i

. It is linear criterion and yields an analytic solution.
However, it is quite sensitive to noise, even with a large
set of data points[5].

To address this problem, there is another criterion,
based on Euclidean distance between point m; and its
corresponding epipolar line I; = Fm!} = [l1,ls,15]7.
Therefore the criterion can be rewritten as :

nﬁ-nz d? (s, F}), (3)

where d(.,.) is given by
T Frin!
VIE+13

The equation (3) includes only first image and it
is necessary to insert the epipolar lines of the second
image, too. This leads to the following criterion :

d(miy li) =

Trﬁi‘nZ(dz ('fhi, F’fh:) + d2 (’fh:, FTﬁLi))a (4)

which operates simultaneously in the two images.

Our problem is to determine the rotation and trans-
lation for a non-deformable moving object. The esti-
mation steps are as follows :

e Extraction of marks in the image plane
e Evaluation of the positions of the marks

o Estimation of the angular position

There are many different ways to define a 3D rota-
tion. One of them is to define an arbitrary 3D rotation
by three consecutive rotations around the coordinate
axes, that is, a rotation by a around the z-axis first,
then a rotation by f around the new y-axis, and finally
a rotation by —+ around the new z-axis.

R =R.(a)Ry(B)R.(—7)

(a, B,—7y) is the same as Fuler angles. Represent-
ing R by the three angles «, # and —v, we have

cosa —sina 07

R= sinaa cosa 0
0 0 1]
cosB 0 sinf]

0 1 0

—sinf 0 cosf |
cosy —siny 0]

l siny cosy O
0 0 1]

We know that if the images are calibrated, then
the fundamental matrix, F, is reduced to the essential
matrix, E. It can be seen from equation (2) that when
R, t are known, E can be obtained. In other words, £
may be computed as :

0 —tz ty 11 Ti2 T13
E= tz 0 —ix ro1 Tz T3 | (D)
-tz tx 0 T31 T32 T33

Now problem is to find (a,f,7,tx,ty,tz) that will
minimize the fitness function defined by equation (4).
This minimization is considered as an optimization
problem and has performed by a butterfly-based fine-
grain parallel GA introduced in the next section.

4 Butterfly-based Parallel GA : Buf-PGA

Buf-PGA[6], deals with several small subpopulations
with equal size each one mapped onto a different node
of butterfly network. In other words, a panmictic
population is divided into many subpopulations dis-
tributed among processors of butterfly. However there
is no limitation in the size of subpopulation, it is de-
sired to have a few individuals in each processor. Local
subpopulations are initiated inside the node randomly.
Each individual which is a solution to a given problem,
is represented by a string of values called chromosome.
Fitness of all the individuals in the population are eval-
uated in parallel by each processor locally and there is
no need to any communication till this step of the al-
gorithm. Mimicking nature, selection is being done
in the neighborhood of individuals which is not fixed
and can be expanded with a not-so-high probability.
The smallest neighborhood includes the node itself and
its first-degree neighbors, which are connected via one
edge to this node: this makes four neighbors for most
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Figure 2: Details of Evolution in Each Node of Butterfly,
Range = 1

of the processors. The exception is only on the first
and the last level of the butterfly, where each node has
only two first-degree neighbors. Giving different val-
ues to “Range” parameter causes changes in the neigh-
borhood. For example for Range=1 neighborhood is
restricted to the first-degree neighbors while Range=2
includes the second-degree neighbors, too. The neigh-
bors of the first-degree neighbors are called as second-
degree neighbors.

Figure 2 indicates details of local operation con-
ducted by each processor to evolve its subpopulation.
each stage of the algorithm, every node of the butter-
fly gathers all the individuals from its neighborhood
with its own subpopulation into a pool called selection
pool and then selects n individuals randomly using a
roulette wheel method. n individuals are selected from
a pool including (1 + P) *n individuals. n denotes the
size of each subpopulation and P stands for number of
processors in the predetermined neighborhood. Illus-
trated situation in Fig. 2 includes four processors in
the neighborhood of the processor, since Range is set
to one.

In order to evaluate the algorithm, the standard on-
line and offline were applied as performance measures
in our experiments.

online(T) = % z mean(t) (6)

Architecture Butterfly
Dimension 2 and 3 dimensional
Generations 20 ... 100
Average over 5 runs
Range of Neighborhood 1& 2

Sub Population Size
Selection Mechanism
Crossover Mechanism
Crossover rate 0.1,...,1.0,
Mutation Rate 0.0001,...,0.1

set {1,2,5,10}
Roulette Wheel
Uniform Crossover

No of Input Points 17
range of angles: «, 3,7 0...15
range of tx,ty,tz 10...110
Performance Measurements Online & Offline

Table 1: Specifications of our experiments

T
of fline(T) = %Z best(t) (7)

where mean(t) is the mean fitness of the subpopu-
lation at generation ¢, and, best(t) is the fitness of the
fittest individual of the subpopulation at generation t.

5 Experimental Results

The Butterfly-topology fine-grain PGA, Buf-PGA,
has been simulated and estimating of angular posi-
tion of a moving object was performed using image.
The equation (4) had the role of fitness function and
we tried to minimize it by introducing two sets of 17
correspondent points of the first and second images to
the system. Table (1) indicates the detail specifica-
tions of the implemented algorithm. As it can be seen,
a, 3,7 vary between 0.00 and 15.00 degrees at inter-
val 1 degree. The results indicate that our algorithm
is successful at both online and offline performance,
however it shows more convergence at online.

6 Conclusions and Future Work

The method proposed in this paper allows the esti-
mation of the three rotation angles of an object us-
ing epipolar geometry and parallel genetic algorithm.
Based on the results, there is a good possibility that
our proposed algorithm may outperform some well-
known linear methods in the motion. Moreover, find-
ings lend support to the assumption that the butterfly
is a promising network for implementing fine-grain par-
allel GAs. They suggest that it may be beneficial to
apply butterfly-based fine-grain parallel GA to “Struc-
ture from Motion” problem.
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