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Abstract: - The obstacle avoidance and path planning is one of the most important problem in mobile robots,

especially in dynamic environments which both target and obstacles are moving. Also the ideas and algorithms

for controlling and decreasing the real robot error in path is another problem that must be solved. Usual methods

have two separated parts, path planning with obstacle avoidance and auto-tuning motion control. 

In this paper we combined these two parts, discuss about the pursuit idea in robot motion control and show the 

modification with genetic algorithm to achieve a method for navigation of a two wheeled mobile robot. 

All ideas such pursuit and obstacle avoidance are taken from nature, and has been executed with genetic algo-

rithm and fuzzy logic to train an intelligent robot in dynamic environment. 

1 Introduction 
An intelligent mobile robot is a type of autono-

mous mobile vehicle that is able to independently

plan its own route and navigate through obstacles to

reach a specified destination. There is no human

input or intervention. Its potential applications 

range among civilian (automatic cars), industrial 

(co-operative mobile robots in factories), military

(unmanned vehicles to destroy enemy target) and 

fun (soccer player robots) usages. 

A simplified schematic model of a mobile robot

controller is depicted in figure 1. The decision unit 

module acts as the brain of the robot deciding what 

to do, according to the robot’s goal and also the ro-

bot perception from its environment. It then sends a

planning request to the path planner. The path plan-

ner should determine the nearest route in terms of 

distance or time to the target which is free from col-

lisions. The motion controller is responsible for fol-

lowing the suggested plan by the path planner, ac-

cording to mobile robot’s low level (physical) mo-

tion limitations as closely as possible (assuming

that a path plan exists). In other words, the simpli-

fied controller model introduces three abstraction

levels for the mobile robot navigation.  In this paper

we concentrate our discussion on the path planner 

and motion controller modules, and call these parts 

“the robot navigator”. Many classical methods such 

as path velocity decomposition [6], incremental

planning [6], probabilistic approach [14], cell de-

composition [1], potential field [3] and other meth-

ods are proposed for path planning in static and dy-

namic environments. The cell decomposition algo-

rithm computes explicitly the configuration space 

of the moving robot’s environment, decompose the 

resulting free space into cells, and then search a

route in the free cell graph. This technique is suit-

able for static and accessible environments (the en-

vironment must be completely accessible and the 

obstacles may not move). The artificial potential

field is another method which is well used for path

planning. However, it is computationally expensive, 

and still does not give distance-efficient solutions.

These methods and the majority of other proposed

methods are best suitable for static environments;

however, they may result in poor performance for

dynamic environments [1,2,3,4].

Figure 1. The simplified schematic model of a 

mobile robot controller. 



In dynamic path planning problems, unlike static 

problems, the problem is not solvable by merely

constructing a geometric path and then following

this path because the proposed plan by the path 

planner module becomes invalid in short time (de-

pending on the stochastic-ness of the environment) . 

However, some of the previous classical methods

are still applicable with some modifications and

extensions which are aimed at taking the effective-

ness of the time dimension into account [1,9].

In recent years, the application of learning tech-

niques in mobile robot motion planning has been 

widely investigated by researchers. Modifying the 

classical methods of path planning became a popu-

lar subject and different learning techniques have 

also been exploited in order to improve the per-

formance of such methods to use them in dynamic

environments. Canny and Reif [12] showed the

computational complexity of these methods in their 

research and proved that motion planning for a 

point robot in a two-dimensional plane with a 

bounded velocity is an NP-hard problem. However,

these classes of solutions are still useful methods in

this domain and many researches are attempting to 

achieve further findings in mobile motion planning

by means of such methods [6].

The motion controller module is responsible for 

determining the physical configuration of the mo-

bile robot by means of the suggested route plan 

(from the path planner module). The challenge of 

motion planner’s task is reflected in the fact that

although a mobile robot in the plane possesses three 

degrees of freedom of motion, it has to be con-

trolled by only two control inputs1 and under non-

holonomic motion constraints. This task is a well-

known problem of nonlinear control and there exist

many classified solutions for it such as order reduc-

tion and  Lyapunov  approaches [1,6].

Another class of methods for robot navigation is 

those for which the controller merges the motion

controller and path planning modules into one. The

new module is responsible for setting directly the

physical configuration of the robot based on the 

robot’s goal and perception; this module does not 

compute a path plan explicitly anymore. As the 

controller is not responsible for constructing a geo-

metric path in an abstract level and then following 

this path, this idea may give us higher simplicity in 

the design of the robot’s controller; however, the 

robot’s navigation to the target may not be optimum

in terms of time and distance. Some previous works

were done using this class of robot navigation 

1 The robot’s right and left wheels’ velocity.

methods, with and without learning; however, none 

of them focus on applying this class of methods in 

environments containing obstacles whether moving

or not. A modification of this class of methods can

be applied in dynamic environments for which pre-

dicting the robot’s future path is not possible. Be-

sides, in case of computational limitations, the 

method proposes low complexity for fast decision

making. This paper, contributes a concrete repre-

sentation of our new approach by proposing the 

application of genetic learning method in latter 

class of navigation methods; also, we verify the

successful application of our proposed method to

real robot navigation situations. In the next section,

we derive the equations involving our approach,

based on the kinematic model of the robot. Apply-

ing genetic learning algorithm to the domain in ad-

dition to the implementation phase is demonstrated

in Section 3. The proposed method’s results are 

showed and discussed in Section 4; and finally in 

section 5, we arrive at conclusion and discuss direc-

tions for future work. 

2 Mobile Robot Navigator 

The fundamental idea for the navigation method

is inspired from wild animals when pursuiting their

target. This control approach is so useful for reach-

ing a static or moving target and is also applicable 

in rocket motion control. In this method the non-

holonomic mobile robot attempts to change (adapt) 

its wheels’ velocity to decrease its angle with the 

target at each decision point.

We consider a two wheel mobile robot with the

kinematic model demonstrated in figure 2 and equa-

tions 1, 2 and 3. 

Figure 2. The schematic model of a non-

holonomic mobile robot.
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Where and are the robot’s left and right 

wheel’s velocities, respectively; d is the distance 

between two wheels and 

lV rV

 is the angle between the 

robot’s direction and x axis.

The robot’s goal is to reach the target at the end

of the experiment; the robot’s angle ( ) at the tar-

get position may be arbitrary. The robot starts at a

position ( , ,x y ), moving based on its wheels’

velocity, and finally reach its target ( ', ',x y ). In 

order to reach the target by an exponential rate2, the 

desired values for  and V must be:

1 AngleErrorK   (5) 

2 DistanceErrorV K   (6) 

Where DistanceError is the distance between the 

center of robot and target; and AngleError is the 

difference between the angle of robot’s direction

and the angle of the connecting line between the

center of robot and the target. The solution to these

equations is as follows: 

 DistanceError AngleErrorl d aV K K

      (7)

 DistanceError AngleErrorr d aV K K

      (8)

These equations show that the robot tries to de-

crease its angle error to the target while decreasing 

its distance error to it. The resulting path’s proper-

ties derived by these equations depends on the

coefficients and K .aK d

For developing this idea, it seems better to use a 

table of selective (according to the situation) coeffi-

cients instead of always using the same coefficients 

(constants). So, in order to have a good training, we

split the distance error variable range into 7 disjoint

intervals and angle error to 11. As it is shown in

figure 3 and 4, as the angle (distance) error in-

creases, the intervals become longer; this is because

2 The rate of distance and angle error’s convergence to

zero.

the criticality of situations regarding lower angle

(distance) errors is higher in comparison to higher

values.

Figure 3. Angle error slides. 

Figure 4. Distance error intervals. 

2.1 Obstacle Avoidance 
Now that the mobile is able is to reach the target, 

it should avoid the obstacles as well. For obstacle 

avoidance, the obstacles will be avoided locally by

the robot. In other words, the robot will avoid the 

obstacle just after obstacle perception. For this pur-

pose, two approached are possible. The first ap-

proach is to keep the motion equations body (equa-

tions 7, 8) unchanged, and only changing the coef-

ficients ( and ) appropriately when an obsta-

cle is observed by the robot. Consequently, the ap-

propriate values for and  at each time also

depends on the relative position of the robot to the

newly observed obstacle. However, we used an-

other approach for which we add new terms to the

motion equations; in this approach, we approximate

the robot’s future path and calculate the minimum

distance between the robot’s center and the obstacle 

( ) in this path. Figure 4 and equations 9-12 dem-

onstrates the calculations for evaluating .

aK dK

aK dK

H
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Figure 4. The process of calculating . (H 0x

and  are the dimensions of rotation center and R 

is radius of rotation. ) 
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In some special occasions R is infinitive which

occurs when ; in such case, robot’s path is a 

straight line so H  is the distance of this line from

the obstacle. 

lV V

Finally, the following equations will take  into 

account for robot’s obstacle avoidance while get-

ting closer to the target. 

H
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Where
2

d
r r and  is the obstacle radius 

and is the distance between robot’s wheels. (Sign

of the H  is important and should be calculated in

relation to 

r

d

lV V r ) . This approach first estimates

the curve (as a circle) on which the robot will move

in its path; if it passes through the obstacle it tries to

change its direction to avoid the obstacle.

We set 10 different situations (intervals) for 

choosing a suitable in attention to our  and oK H

r . The  value table is shown in Figure 5. For 

the training part we will exploit genetic algorithm

to learn the optimum values for these 8 coefficients 

in addition to the previous 18 (11 + 7) coefficients.

oK

Figure 5. values in terms of intervals.oK H

3 Genetic Implementation 

Fitness function used for this problem is based on 

two parameters. First, the time it is taken to reach 

the target. If the robot takes too long to reach target

(doesn’t reach target in a limited time) a large num-

ber is considered as fitness. Another parameter is a

penalty for obstacle collisions. Robot is allowed to 

pass through the obstacle but for each time step

which the robot is in obstacles area, fix number is 

added to

its fitness. This penalty makes the algorithm to

choose gains such they avoid obstacles.

Algorithm is simulated in a random area with

random sized obstacles. Obstacles are considered

circles. The simulation is done 20 times for each

robot from random positions and the final fitness is

the sum of each fitness function.

The next step is to code each state to a binary 

chromosome. Each gain is a real number less than 

one and is coded as 32-bit precision binary number.

So each of the  chromosome contains 11 Ka  gains,7

Kd and 8 Ko  gains which makes each chromosome

832 bit binary string. The detail of how these genes 

affect the performance of robot is not important to

genetic algorithm.

Used Genetic operators are crossover and muta-

tion. Application of these operators is by roullete-

wheel selection strategy, which fitter individuals

have more chance for reproduction and the chance 

for other individuals to be used is not zero.

Crossover is the process of choosing two indi-

viduals and making new chromosomes from them. 



Crossover operation chosen for this purpose is mul-

tiple-point crossover. Because of the long chromo-

some that is used (Single point crossover changes

the population slowly). Breaking points are choused 

randomly within 832 possible positions in two 

chromosomes.

Mutation is process of choosing one individual

and changing its chromosome randomly. The 

change is in the form of changing a bit in chromo-

some. Mutation is for exploring the search space.

Mutation is included as an operator to recover a 

gene that may have been lost in the population. It is 

not the primary operator in the algorithm, which is 

reflected in the low probability (0.01) of mutation.

Figure 6. The crossover process. 

The population size used was 50 while number of

generations was 200. 

4 Simulation Results 

Figure 7 shows the convergence of individuals

fitness function after simulation.
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Figure 7. Convergence of fitness function. 

In this Section, two scenarios of robot navigation 

are discussed. In the first scenario there’s no obsta-

cle in the environment; meaning that, we want to

test only the target reaching ability of the robot. 

Figure 8 shows the simulation result for the fittest 

individual in an environment with no obstacle. As it 

is shown, the robot will smoothly adjust its wheels’

velocity to reach the target.  The robot has posi-

tioned on a random point of the field. Since there is 

no obstacle on the field, the path curve has a uni-

form shape. 

Figure 8. Simulation result in an environment

with no obstacle; the black square is the target. 

The second scenario considers environments con-

taining several obstacles.

Figure 8 shows the simulation of the best individ-

ual after the production of generations from a ran-

dom position. The initial angle of robot is 0 and its 

initial position is (20,-1) and target position is (0, 

0). From the previous arguments, it is expected that 

as the robot approaches an obstacles it changes its 

direction to avoid collision. 

As it is clear in the picture, the path to the target 

is not the optimum one, because the obstacles are 

observed and considered locally by the robot. The 

points in which the robot has changed the direction 

are the points that the obstacle enters the robot’s 

detection area. This has made the path a bit non-

smooth.



Figure 9. The fittest individual after running the ge-

netic method in an environment with several obstacles.

5 Conclusion

In this paper, we have proposed a new method for

mobile robot navigation concerning the application 

of genetic algorithm for determining appropriate 

coefficients in the motion equations of the robot.

The experimentations verified the successful result 

of the proposed method in different environments.

Also, the results of experiments are hope-giving to

complete these ideas for achieving a more opti-

mized and robust method for an auto-tuning mobile

robot controller in static and dynamic environ-

ments. The learning algorithms’ settings may not be 

the same in different environments and the designer

should decide upon it, based on the environment’s

characteristics.

A potential future research direction is to change 

the tables of the equation coefficients into fuzzy

functions in order to approve the performance and

smoothness of the resulting path. Another direction

is to tune the learning algorithm for faster conver-

gence into an appropriate path.

Another potential work is to apply genetic pro-

gramming [8] to the domain in order to calculate a 

formula for wheels velocities directly; however it 

has its own complications.
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