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Abstract: - This paper describes a rapid prototyping platform developed to address the complex design of real-time decision 
and control strategies for commercially-available mobile robots. The platform consists in a microprocessor board fully 
controllable in Matlab/Simulink object-oriented programming environment, directly connected through a serial link and a 
specific communication protocol to the mobile robot. The architecture also encompasses a vision sensor that can be used as a 
further source of feedback for real-time control, allowing the users to develop, test and compare directly on the hardware 
navigation strategies of considerable complexity. To show the practical advantages of the platform, this paper illustrates the 
design of an effective behaviour-based fuzzy control strategy guaranteeing simultaneously obstacle-avoidance and target-
reaching performance in an unknown environment. 
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1   Introduction 
The major challenge of autonomous robotics is to build 
robust control schemes that reliably perform complex tasks 
in spite of environmental uncertainties and without human 
intervention. In the last decade, a great amount of research 
has been devoted to increase the autonomy of mobile robots 
and several advanced control algorithms have been 
proposed to guarantee successful navigation in real-world 
applications [3, 7-14]. The real performances of mobile 
robots are intimately linked to the (generally unknown) 
operating environment, so that design procedures based on 
the usual sequential schema including off-line modelling, 
simulation-based debugging and validation, final 
implementation on hardware and subsequent trial and error 
adjustment, seldom produces satisfactory results without 
compromising the actual developing times. Moreover, in 
many cases, developing an accurate model of the overall 
system for simulation analysis could be time consuming or 
even prohibitive, due to the uncertainty and complexity of 
robot mechanics, sensors, and environment. An 
experimental validation is also recommendable to include 
adverse observation conditions (e.g. poor lighting, noise 
defective hardware). For such reasons, even though part of 
recent literature still carries on design and validation of 
considerably sophisticated control algorithms for 
autonomous robot navigation only basing on simulation and 
idealized environments [9, 10, 11, 13], the role of 
experimental validation during the design is becoming more 
and more crucial for successful design. This, in turn, 
determines a further complication of prototypes 
development, especially in the case of advanced control 
architectures, since tangled hardware and software issues 
have to be addressed.  

The need for design and verification methodologies 
simultaneously increasing the reliability of a design project 
and reducing the installation times is felt as a crucial 
problem in most research areas of engineering [1]. Sharing 
this motivation, this paper describes a flexible and modular 
platform to rapidly develop and experiment control 
algorithms for the autonomous navigation of mobile robots. 
Our platform has the following aims:  
• allowing real-time control of commercially-available 

mobile robots, overcoming the inherent limitation of 
low-cost hardware (sensors, actuators), and improving 
the real-world performances; 

• exploiting the potentialities of hi-level programming 
environment, such as the widespread and versatile 
Matlab/Simulink software package; 

• developing a user-friendly interface for real-time 
monitoring and parameter tuning; 

• guaranteeing modular hardware and software 
architectures for straightforward modifications, 
debugging, and evolution of the design schemes. 

To give an idea of the practical advantages allowed by the 
proposed experimental platform, this paper describes the 
design of a fuzzy control architecture for autonomous robot 
navigation in an unknown, dynamic environment. The 
design goal is to find the proper path to reach a certain 
target avoiding all the obstacles found in the unknown 
environment. The adoption of fuzzy logic (FL) [3, 9-14] 
allows us to overcome the difficulties of properly modelling 
the unstructured and dynamically changing surrounding 
environment, hardly expressible through mathematical 
equations. However, while on the one hand FL allows us to 
directly program the decision algorithm using linguistic 
information and rules of thumbs, on the other one, the lack 
of universal and reliable design guidelines and the explicit 



reliance on trial-and-error adjustments make the “simulate-
and-then-experiment” approach laborious. 

Thanks to the proposed rapid prototyping tool, we 
succeed to design a hierarchical fuzzy controller in which 
two different behaviours (avoid obstacles and reach the 
target) are designated to two distinct algorithms (based on 
the reactive paradigm [2, 6]), which are subsequently fused 
in a single control law by means of a third fuzzy controller 
guaranteeing the safety of the robot and the accomplishment 
of the task. Each layer of the hierarchical controller has 
been designed and tested separately before being used in the 
final architecture. The possibility to develop modular design 
of complex control strategies is a further advantage offered 
by the presented platform. 

 
 

2   Overview of the proposed architecture 
Our rapid prototyping platform is based on the widespread 
Khepera II robot [14]. Khepera II is a differential drive 
mobile robot developed by the EPFL (Ecole Polytechnique 
de Lausanne). It is an efficient tool for rapid, initial tests of 
innovative experiments, ranging from autonomous 
navigation to studies of communities of biological entities 
in real world environments [7, 8, 11]. A Khepera has two 
wheels, each driven by a dc motor through a 25:1 reduction 
gear. An incremental encoder on the motor axis gives 24 
pulses per revolution of the motor that corresponds to 12 
pulses per millimetre of path of the robot. The built-in 
motor controller accepts either position or speed commands.  
Eight infrared sensors are distributed around the robot for 
obstacle detection, although they generally provide noisy 
and scarcely reliable signals that are strongly influenced by 
lighting conditions and obstacle’s reflective properties. 
The readings of the encoders, of the proximity sensors and 
the assignment of the position/speed commands are 
externally available thanks to the serial link. 
The Khepera can be wire-controlled with every strategy that 
can withstand the limited speed of serial communication, 
since the wire-link between Khepera and terminal allows 
the complete control of the functionalities of the robot 
through an RS232 serial line and protocol. Alternatively, it 
is possible to download the control code in robot’s flash 
memory, even if this solution makes intensive trial-and-
error tests more complicated (a new download is necessary 
for every modification of the control code). 

Our interface allows to directly develop control 
programs for the Khepera using Matlab/Simulink codes. 
This relieves the designer from most of low-level hardware 
and software problems, letting him focus on the control 
system design using hi-level and intuitive libraries of 
toolboxes, thus fully overcoming the tedious transition from 
simulations to experiments. The core-equipment of our 
Matlab-to-Khepera interface is the dSpace dS1104 
microprocessor board, since it possesses various interesting 
features suitable for our purposes. Namely, the board is 
fully programmable in Matlab/Simulink environment 

through Real-Time Workshop (RTW), allowing the real-
time communication between the board and Matlab routines 
concurrently running on the PC thanks to the mlib/mtrace 
software. Furthermore, the design of user friendly control 
panels and of virtual instruments for on-line monitoring and 
on the fly parameter tuning can be intuitively realized with 
the software Control Desk [4]. Finally, and most 
importantly for our application, it is endowed with a RS232 
serial port whose control can be realized directly via 
suitable real time interface Simulink blocks exploiting the 
ASCII based communication protocol provided by K-Team. 
Every interaction between terminal and Khepera is 
composed by: 
- a command, beginning with one or two ASCII capital 
letters (representing specific commands for the Khepera) 
and followed, if necessary, by numerical or literal 
parameters separated by a comma and terminated by a 
carriage return (CR) or a line feed (LF), sent by the terminal 
to the Khepera robot; 
- a response, beginning with the same one or two ASCII 
letters of the command but in lower-case and followed, if 
necessary, by numerical or literal parameters separated by a 
comma and terminated by a carriage return and a line feed, 
sent by the Khepera to the terminal. 

For example, if we want to set the wheel speeds to +15 
and -5 pulses/10ms respectively, the corresponding 
command to be translated in ASCII format is D,+15,-5CR. 
In order to increase the sensor equipment of the robot and 
improve design possibilities, a web cam with a top-view of 
the robot arena has been added to the system and connected 
to the PC with an USB interface. The overall experimental 
set-up is shown in fig. 1. The continuous lines represent 
physical connections between hardware units, whereas the 
dotted lines represent data exchanges between software 
routines in concurrent execution. 

The mobile robot is connected with a serial cable to the 
dSpace controller board (mounted in one PCI slot of a PC), 
which executes in real time the Simulink program 
controlling the robot and managing the serial 
communication. 

The RGB images provided by the web cam are 
processed through a Matlab routine based on colour 
detection. The extracted information are then continuously 
sent to the control scheme running on the dSpace board 
through the mlib/mtrace software. Since the vision 
algorithm runs in Matlab under Windows operative system, 
strict real time performances can’t be guaranteed. 
Nevertheless, given the limited speed of the Khepera, this 
limitation is not particularly significant. In particular, 
setting the sampling time of the vision system Tv 
sufficiently higher than the average time to process a single 
image, we guarantee that the information sent by camera 
will be always available on time. For our experiments, we 
choose Tv = 200 ms whereas the sampling time of the 
control system runs at Tc = 20 ms. 
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Fig. 1-Overall configuration of the proposed 
test bed architecture 
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Fig. 2-Behavior based control scheme 

 
 
 

3   Implemented control algorithm 
In this section we describe the implementation of a control 
algorithm for the autonomous navigation of a Khepera 
mobile robot in a 1.2 ×1.2 m2 arena with obstacles and a 
target to be reached. The positions of the target and of the 
obstacles are not known in advance. As stated before, a web 
cam is mounted on the top of the arena. Instead than 
following an internal representation of the path to the target, 
the navigation algorithm implements a control system based 
on the reactive paradigm only relying on sensory 
information. There is a direct link between sensors and 
actuators in order to by-pass path planning operations that 
would significantly slow-down the decision process. In our 
approach, no explicit representation of the world is given to 
the mobile robot, and the vision system can be considered 
just as a sensory device measuring the relative position of 
the robot with respect to the target. 

Two simple behaviors, namely reach the target and 
avoid obstacles, have been realized with two different 
fuzzy controllers, henceforth called FLC1 and FLC2 
respectively. The reach the target behavior only depends 
on artificial vision information and is the primary task for 
the robot. The avoid obstacles behavior has the highest 
priority, only depends on IR sensors signals and takes 
place if an obstacle appears on robot’s path. A fuzzy 
supervisor has been then designed to combine the reference 
wheel speeds calculated by each behavior layer following a 
priority code.  
The final commanded wheel speeds are then sent to the 
built-in speed loop of the Khepera. The structure of the 
designed controller is represented in fig. 2.  
The choice of this kind of architecture for our controller 
has been motivated by the following main advantages that 
this structure shows with respect to a monolithic solution: 
 
1. debug and tuning operations are faster and easier since 

each behavior is described by few rules and inputs; 
2. the final structure is more flexible as new simple 

behaviors can be easily added to expand robot skills. 
 

In the following, the design of the two behaviors and of the 
supervisor are described in detail. 
 
 
3.1 Reach the target 
This behavior reacts to the stimuli of the vision system 
which provides the information about the relative position 
between robot and target. The behavior ignores the presence 
and position of obstacles. The Khepera is equipped with two 
colored markers on its top for position and orientation 
detection, and the target is marked with a red spot. The 
image processing is based on conventional color detections 
on RGB formats using the Matlab image processing 
toolbox. The information captured by the vision system are 
updated every 200 ms and passed through mlib/mtrace to 
the FLC1 which is running on the dSpace board. According 
to this behavior, the robot firstly turns until it is aligned to 
the target, and then moves straight ahead. The distance 
(DIST) between robot and target and the alignment error 
(DIR) of the robot are the information provided by the 
vision system and are the inputs of FLC1. The linguistic 
labels for fuzzy sets on the DIST input (expressed in 
millimeters) are zero, near and far, while DIR input is 
partitioned in left, center-left, center, center-right, right 
fuzzy sets. The output variables are the speed command 
signals for robot wheels whose linguistic labels are negative 
fast, negative slow, zero, positive slow, positive fast. We 
have adopted triangular membership functions (MFs) for 
the inputs (fig.3) and five uniformly spaced singletons for 
the output. In table 1, the rule base is reported using AND 
as conjunction operator. As can be seen, if the alignment 
error is zero, the speed for both wheels will be positive and 
the robot will move straight in the direction of the target; on 
the other hand if alignment error is center-left, then right 
speed is negative slow and left speed is positive slow in 
order to make the robot turn clockwise until the alignment 
error is zero. When DIR is left similar considerations hold 
but the robot turns more rapidly. Finally, when distance is 
zero speed is zero for each wheel and the robot stops on the 
reached target. 
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Fig.3 - Input MFs for FLC1 

 
Fig.4 - Input MFs for FLC2 

Table 1- FLC1 Rule table . 
INPUTS (logic AND) OUTPUTS 

Dist Dir Right speed Left speed 
zero any zero zero 
near center positive slow positive slow 
far center positive fast positive fast 
any left negative fast positive fast 
any centre-left negative slow positive slow 
any right positive fast negative fast 
any centre-right positive slow negative slow 

 
Table 2 – FLC2 Rule table  

INPUTS (logic OR) OUTPUTS 
S0 S1 S2 S3 S4 S5 Right 

speed 
Left 

speed 
coll coll coll any any any negative 

fast 
zero 

any any any coll coll coll zero negative 
fast 

close appr any any any any negative 
fast 

positive 
slow 

any any any any appr close positive 
slow 

negative 
fast 

far far far far far far positive 
fast 

positive 
fast 
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Fig.5 - Input MFs for FLC2 
 

 
3.2 Avoid obstacles 
To guarantee the safe navigation of the Khepera, the FLC2 
receives, as inputs, the signals coming from 8 IR proximity 
sensors and imposes, as outputs, wheel speeds so that robot 
steers in opposite direction of close obstacles or goes 
straight ahead in condition of open field. The sensors are 
labeled after their position on the Khepera from S0 to S7 as 
reported in fig 4. 
We have chosen the same triangular MFs for the eight 
inputs (see fig.5) in the normalized universe of discourse 
and five uniformly spaced singletons for the output. The 
linguistic labels for each input are far, approaching, close 
and colliding depending on the distance between robot and 
obstacle. In table 2, the rule base representing this behavior 
is reported using OR as conjunction operator and neglecting 
for sake of simplicity the rules relative to the back sensors 
S6 and S7. For example, if an obstacle is on the left (the 
colliding membership of the S0 sensor is activated), the 
right wheel speed will be negative fast and the left wheel 
zero to make the robot turn clockwise until the sensor no 
longer detects the obstacle. Instead, according to last rule of 
the table, if no obstacle is seen by any of the sensors, the 
robot can proceed straight ahead with the maximum speed. 
 

3.3 Fuzzy supervisor 
The fuzzy supervisor determines the priority of execution 
for the two elementary behaviors according to the proximity 
of obstacles. The maximum value of the signals provided by 
proximity sensors (henceforth called max_prox), and the 
reference speed for the two wheels, provided by FLC1 and 
FLC2 respectively, are the input signals of the supervisor, 
whereas the outputs are the commanded speeds sent to the 
Khepera. 
If max_prox is close, an obstacle is dangerously close and 
thus, independently from the actual location of the target, 
the robot has to avoid the collision. In this case, absolute 
priority is assigned to the avoid obstacles behavior, while 
reach the target is neglected (the outputs of the supervisor 
coincide with those of FLC2). If max_prox is far, then 
robot’s path is clear and only the reach the target behavior 
is executed (the outputs of the supervisor coincide with 
those of FLC1). In every intermediate condition between 
the two mentioned extremes, the supervisor will perform a 
fusion of the two FLCs blending their outputs to achieve a 
safe navigation toward the target. 
It must be pointed out that even if many other strategies for 
switching between these two simple behaviors could be 
easily conceived, we adopted a hierarchical fuzzy approach 
envisioning future research developments including the 
integration of multiple and more advanced behaviors in the 



proposed scheme. As stated in [3], in such cases fuzzy 
supervision offers a transparent and extremely effective 
solution based on hi-level linguistic decision rules. 
 
 
4   Experimental results  
The navigation experiments have been conducted in a 
1.2 ×1.2 m2 arena with white obstacles (undetectable to the 
camera) and a red spot representing the target that the 
Khepera has to reach. In fig. 6, it is shown a panoramic 
view of the robot environment. A fine tuning of the fuzzy 
controllers has been realized monitoring the navigation 
performances of the Khepera with Control Desk. We want 
to underline here that these modifications can be performed 
quite easily, changing the parameters in the Simulink 
scheme, repeating the experiment and observing the 
behavior of the robot until good results are obtained. Using 
high level software such as Matlab/Simulink and Control 
Desk, this trial and error procedure is greatly simplified.  
Fig. 7 shows the navigation performances of the robot. The 
robot path has been reconstructed using the information 
provided by the camera and then has been overlaid with the 
map of the environment (which is not exploited for control 
purposes). The real proportions among obstacles, target and 
Khepera have been faithfully reproduced. After some 
adjustments of the MF positions, the robot is able to 
successfully navigate in its environment and reach the 
target, despite of changing light conditions, obstacles and 
noise. In order to show the performance of the fuzzy 
supervisor, Fig. 8 a shows the trend of max_prox and fig.8 b 
the right wheel reference speeds provided by the avoid 
obstacles and the reach the target behavior and by the fuzzy 
supervisor. For sake of clarity, even if the whole experiment 
lasts about 40 seconds, in both figures just the time interval 
ranging from 4 to 10 seconds is considered. The path of the 
robot during this period of time is enlightened in grey in 
fig. 7. Fig. 8a also reports the membership functions of 
max_prox, close and far, used for the fuzzy supervisor. 
From 4 to about 6.5 seconds, max_prox is far and the output 

of the supervisor coincides with the output of FLC1. The 
robot is just turning on itself to point toward the target and 
no obstacles are in its neighborhood. The two peaks in fig. 
8 a refer to the two first obstacles the robot finds on its way. 
The first obstacle is not very close and the fuzzy supervisor 
blends the output of FLC1 and FLC2 so that the robot just 
slightly deviates from the straight path to the target. The 
second obstacle is directly on robot’s path and is 
approached around time instant 9 s. In this case, max_prox 
is close and, as can be seen in fig. 8 b, the output of the 
supervisor is equal to the output of FLC2 in order to avoid 
the collision. 
 
 
5   Conclusions 
This paper has described the experimental implementation 
of a behavior-based fuzzy control system for autonomous 
navigation of a mobile robot in an unknown and dynamic 
environment. For the real-time implementation of this 
control architecture, a rapid prototyping platform has been 
developed using Matlab/Simulink hi-level programming 
environment, in order to relieve the designer from coping 
with tangled hardware and software issues and to permit a 
straightforward design and an intuitive monitoring of the 
experiment. The proposed results enhance the effectiveness 
of the fuzzy-based autonomous navigation strategy and, 
most importantly, prove the distinctive potentialities of the 
developed experimental platform in terms of modularity, 
transparency, and easiness of design in view of more 
challenging experiments. In fact, in order to increase robot 
skills to solve difficult tasks in complex scenarios, future 
research will be devoted to the implementation of further 
behaviors, to the use of a broader sensor suite (e.g. camera 
on board, ultrasonic sensors) and to the cooperation among 
different robots. Thanks to the flexibility of the proposed 
platform, a noticeable reduction of the development time is 
expected. 

 

 
Fig.6 – Panoramic view of the Khepera environment. 
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Fig.7 – Measured path of the mobile robot in real world 

environment 
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Fig.8 - Maximum value of the signals provided by proximity 
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