
Experimenting fuzzy control strategies for mobile robots
on a rapid prototyping platform

F. CUPERTINO, L. DELFINE, V. GIORDANO, D. NASO, B. TURCHIANO

Dipartimento di Elettrotecnica ed Elettronica
Politecnico di Bari, Bari

ITALY

Abstract: - This paper describes a rapid prototyping platform developed to address the complex design of real-time decision
and control strategies for commercially-available mobile robots. The platform consists in a microprocessor board fully
controllable in Matlab/Simulink object-oriented programming environment, directly connected through a serial link and a
specific communication protocol to the mobile robot. The architecture also encompasses a vision sensor that can be used as a
further source of feedback for real-time control, allowing the users to develop, test and compare directly on the hardware
navigation strategies of considerable complexity. To show the practical advantages of the platform, this paper illustrates the
design of an effective behaviour-based fuzzy control strategy guaranteeing simultaneously obstacle-avoidance and target-
reaching performance in an unknown environment.

Key-Words: - Mobile robots, fuzzy control, rapid prototyping, autonomous navigation.

1 Introduction
The major challenge of autonomous robotics is to build
robust control schemes that reliably perform complex tasks
in spite of environmental uncertainties and without human
intervention. In the last decade, a great amount of research
has been devoted to increase the autonomy of mobile robots
and several advanced control algorithms have been
proposed to guarantee successful navigation in real-world
applications [3, 7-14]. The real performances of mobile
robots are intimately linked to the (generally unknown)
operating environment, so that design procedures based on
the usual sequential schema including off-line modelling,
simulation-based debugging and validation, final
implementation on hardware and subsequent trial and error
adjustment, seldom produces satisfactory results without
compromising the actual developing times. Moreover, in
many cases, developing an accurate model of the overall
system for simulation analysis could be time consuming or
even prohibitive, due to the uncertainty and complexity of
robot mechanics, sensors, and environment. An
experimental validation is also recommendable to include
adverse observation conditions (e.g. poor lighting, noise
defective hardware). For such reasons, even though part of
recent literature still carries on design and validation of
considerably sophisticated control algorithms for
autonomous robot navigation only basing on simulation and
idealized environments [9, 10, 11, 13], the role of
experimental validation during the design is becoming more
and more crucial for successful design. This, in turn,
determines a further complication of prototypes
development, especially in the case of advanced control
architectures, since tangled hardware and software issues
have to be addressed.

The need for design and verification methodologies
simultaneously increasing the reliability of a design project
and reducing the installation times is felt as a crucial
problem in most research areas of engineering [1]. Sharing
this motivation, this paper describes a flexible and modular
platform to rapidly develop and experiment control
algorithms for the autonomous navigation of mobile robots.
Our platform has the following aims:
• allowing real-time control of commercially-available

mobile robots, overcoming the inherent limitation of
low-cost hardware (sensors, actuators), and improving
the real-world performances;

• exploiting the potentialities of hi-level programming
environment, such as the widespread and versatile
Matlab/Simulink software package;

• developing a user-friendly interface for real-time
monitoring and parameter tuning;

• guaranteeing modular hardware and software
architectures for straightforward modifications,
debugging, and evolution of the design schemes.

To give an idea of the practical advantages allowed by the
proposed experimental platform, this paper describes the
design of a fuzzy control architecture for autonomous robot
navigation in an unknown, dynamic environment. The
design goal is to find the proper path to reach a certain
target avoiding all the obstacles found in the unknown
environment. The adoption of fuzzy logic (FL) [3, 9-14]
allows us to overcome the difficulties of properly modelling
the unstructured and dynamically changing surrounding
environment, hardly expressible through mathematical
equations. However, while on the one hand FL allows us to
directly program the decision algorithm using linguistic
information and rules of thumbs, on the other one, the lack
of universal and reliable design guidelines and the explicit

reliance on trial-and-error adjustments make the “simulate-
and-then-experiment” approach laborious.

Thanks to the proposed rapid prototyping tool, we
succeed to design a hierarchical fuzzy controller in which
two different behaviours (avoid obstacles and reach the
target) are designated to two distinct algorithms (based on
the reactive paradigm [2, 6]), which are subsequently fused
in a single control law by means of a third fuzzy controller
guaranteeing the safety of the robot and the accomplishment
of the task. Each layer of the hierarchical controller has
been designed and tested separately before being used in the
final architecture. The possibility to develop modular design
of complex control strategies is a further advantage offered
by the presented platform.

2 Overview of the proposed architecture
Our rapid prototyping platform is based on the widespread
Khepera II robot [14]. Khepera II is a differential drive
mobile robot developed by the EPFL (Ecole Polytechnique
de Lausanne). It is an efficient tool for rapid, initial tests of
innovative experiments, ranging from autonomous
navigation to studies of communities of biological entities
in real world environments [7, 8, 11]. A Khepera has two
wheels, each driven by a dc motor through a 25:1 reduction
gear. An incremental encoder on the motor axis gives 24
pulses per revolution of the motor that corresponds to 12
pulses per millimetre of path of the robot. The built-in
motor controller accepts either position or speed commands.
Eight infrared sensors are distributed around the robot for
obstacle detection, although they generally provide noisy
and scarcely reliable signals that are strongly influenced by
lighting conditions and obstacle’s reflective properties.
The readings of the encoders, of the proximity sensors and
the assignment of the position/speed commands are
externally available thanks to the serial link.
The Khepera can be wire-controlled with every strategy that
can withstand the limited speed of serial communication,
since the wire-link between Khepera and terminal allows
the complete control of the functionalities of the robot
through an RS232 serial line and protocol. Alternatively, it
is possible to download the control code in robot’s flash
memory, even if this solution makes intensive trial-and-
error tests more complicated (a new download is necessary
for every modification of the control code).

Our interface allows to directly develop control
programs for the Khepera using Matlab/Simulink codes.
This relieves the designer from most of low-level hardware
and software problems, letting him focus on the control
system design using hi-level and intuitive libraries of
toolboxes, thus fully overcoming the tedious transition from
simulations to experiments. The core-equipment of our
Matlab-to-Khepera interface is the dSpace dS1104
microprocessor board, since it possesses various interesting
features suitable for our purposes. Namely, the board is
fully programmable in Matlab/Simulink environment

through Real-Time Workshop (RTW), allowing the real-
time communication between the board and Matlab routines
concurrently running on the PC thanks to the mlib/mtrace
software. Furthermore, the design of user friendly control
panels and of virtual instruments for on-line monitoring and
on the fly parameter tuning can be intuitively realized with
the software Control Desk [4]. Finally, and most
importantly for our application, it is endowed with a RS232
serial port whose control can be realized directly via
suitable real time interface Simulink blocks exploiting the
ASCII based communication protocol provided by K-Team.
Every interaction between terminal and Khepera is
composed by:
- a command, beginning with one or two ASCII capital
letters (representing specific commands for the Khepera)
and followed, if necessary, by numerical or literal
parameters separated by a comma and terminated by a
carriage return (CR) or a line feed (LF), sent by the terminal
to the Khepera robot;
- a response, beginning with the same one or two ASCII
letters of the command but in lower-case and followed, if
necessary, by numerical or literal parameters separated by a
comma and terminated by a carriage return and a line feed,
sent by the Khepera to the terminal.

For example, if we want to set the wheel speeds to +15
and -5 pulses/10ms respectively, the corresponding
command to be translated in ASCII format is D,+15,-5CR.
In order to increase the sensor equipment of the robot and
improve design possibilities, a web cam with a top-view of
the robot arena has been added to the system and connected
to the PC with an USB interface. The overall experimental
set-up is shown in fig. 1. The continuous lines represent
physical connections between hardware units, whereas the
dotted lines represent data exchanges between software
routines in concurrent execution.

The mobile robot is connected with a serial cable to the
dSpace controller board (mounted in one PCI slot of a PC),
which executes in real time the Simulink program
controlling the robot and managing the serial
communication.

The RGB images provided by the web cam are
processed through a Matlab routine based on colour
detection. The extracted information are then continuously
sent to the control scheme running on the dSpace board
through the mlib/mtrace software. Since the vision
algorithm runs in Matlab under Windows operative system,
strict real time performances can’t be guaranteed.
Nevertheless, given the limited speed of the Khepera, this
limitation is not particularly significant. In particular,
setting the sampling time of the vision system Tv
sufficiently higher than the average time to process a single
image, we guarantee that the information sent by camera
will be always available on time. For our experiments, we
choose Tv = 200 ms whereas the sampling time of the
control system runs at Tc = 20 ms.

Khepera

Serial
interface

Web cam

dSPACE –
Simulink

control scheme

dSPACE
board

PC - Matlab

Fig. 1-Overall configuration of the proposed
test bed architecture

Avoid
obstacles

Reach the
target

IR proximity
sensors

Vision system

Commanded
wheel speed

Fuzzy
Supervisor

Fig. 2-Behavior based control scheme

3 Implemented control algorithm
In this section we describe the implementation of a control
algorithm for the autonomous navigation of a Khepera
mobile robot in a 1.2 ×1.2 m2 arena with obstacles and a
target to be reached. The positions of the target and of the
obstacles are not known in advance. As stated before, a web
cam is mounted on the top of the arena. Instead than
following an internal representation of the path to the target,
the navigation algorithm implements a control system based
on the reactive paradigm only relying on sensory
information. There is a direct link between sensors and
actuators in order to by-pass path planning operations that
would significantly slow-down the decision process. In our
approach, no explicit representation of the world is given to
the mobile robot, and the vision system can be considered
just as a sensory device measuring the relative position of
the robot with respect to the target.

Two simple behaviors, namely reach the target and
avoid obstacles, have been realized with two different
fuzzy controllers, henceforth called FLC1 and FLC2
respectively. The reach the target behavior only depends
on artificial vision information and is the primary task for
the robot. The avoid obstacles behavior has the highest
priority, only depends on IR sensors signals and takes
place if an obstacle appears on robot’s path. A fuzzy
supervisor has been then designed to combine the reference
wheel speeds calculated by each behavior layer following a
priority code.
The final commanded wheel speeds are then sent to the
built-in speed loop of the Khepera. The structure of the
designed controller is represented in fig. 2.
The choice of this kind of architecture for our controller
has been motivated by the following main advantages that
this structure shows with respect to a monolithic solution:

1. debug and tuning operations are faster and easier since

each behavior is described by few rules and inputs;
2. the final structure is more flexible as new simple

behaviors can be easily added to expand robot skills.

In the following, the design of the two behaviors and of the
supervisor are described in detail.

3.1 Reach the target
This behavior reacts to the stimuli of the vision system
which provides the information about the relative position
between robot and target. The behavior ignores the presence
and position of obstacles. The Khepera is equipped with two
colored markers on its top for position and orientation
detection, and the target is marked with a red spot. The
image processing is based on conventional color detections
on RGB formats using the Matlab image processing
toolbox. The information captured by the vision system are
updated every 200 ms and passed through mlib/mtrace to
the FLC1 which is running on the dSpace board. According
to this behavior, the robot firstly turns until it is aligned to
the target, and then moves straight ahead. The distance
(DIST) between robot and target and the alignment error
(DIR) of the robot are the information provided by the
vision system and are the inputs of FLC1. The linguistic
labels for fuzzy sets on the DIST input (expressed in
millimeters) are zero, near and far, while DIR input is
partitioned in left, center-left, center, center-right, right
fuzzy sets. The output variables are the speed command
signals for robot wheels whose linguistic labels are negative
fast, negative slow, zero, positive slow, positive fast. We
have adopted triangular membership functions (MFs) for
the inputs (fig.3) and five uniformly spaced singletons for
the output. In table 1, the rule base is reported using AND
as conjunction operator. As can be seen, if the alignment
error is zero, the speed for both wheels will be positive and
the robot will move straight in the direction of the target; on
the other hand if alignment error is center-left, then right
speed is negative slow and left speed is positive slow in
order to make the robot turn clockwise until the alignment
error is zero. When DIR is left similar considerations hold
but the robot turns more rapidly. Finally, when distance is
zero speed is zero for each wheel and the robot stops on the
reached target.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

0.5

1

Dist [mm]

D
eg

re
e

of
 m

em
be

rs
hi

p

zero far

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0

0.5

1

Dir [rad]

D
eg

re
e

of
 m

em
be

rs
hi

p

left center-left center center-right right

 near

Fig.3 - Input MFs for FLC1

Fig.4 - Input MFs for FLC2

Table 1- FLC1 Rule table .
INPUTS (logic AND) OUTPUTS

Dist Dir Right speed Left speed
zero any zero zero
near center positive slow positive slow
far center positive fast positive fast
any left negative fast positive fast
any centre-left negative slow positive slow
any right positive fast negative fast
any centre-right positive slow negative slow

Table 2 – FLC2 Rule table

INPUTS (logic OR) OUTPUTS
S0 S1 S2 S3 S4 S5 Right

speed
Left

speed
coll coll coll any any any negative

fast
zero

any any any coll coll coll zero negative
fast

close appr any any any any negative
fast

positive
slow

any any any any appr close positive
slow

negative
fast

far far far far far far positive
fast

positive
fast

0 0.2 0.4 0.6 0.8
0

0.2
0.4
0.6
0.8
1

Infrared sensor measure [p.u.]

D
eg

re
e

of
 m

em
be

rs
hi

p far approaching close colliding

1

Fig.5 - Input MFs for FLC2

3.2 Avoid obstacles
To guarantee the safe navigation of the Khepera, the FLC2
receives, as inputs, the signals coming from 8 IR proximity
sensors and imposes, as outputs, wheel speeds so that robot
steers in opposite direction of close obstacles or goes
straight ahead in condition of open field. The sensors are
labeled after their position on the Khepera from S0 to S7 as
reported in fig 4.
We have chosen the same triangular MFs for the eight
inputs (see fig.5) in the normalized universe of discourse
and five uniformly spaced singletons for the output. The
linguistic labels for each input are far, approaching, close
and colliding depending on the distance between robot and
obstacle. In table 2, the rule base representing this behavior
is reported using OR as conjunction operator and neglecting
for sake of simplicity the rules relative to the back sensors
S6 and S7. For example, if an obstacle is on the left (the
colliding membership of the S0 sensor is activated), the
right wheel speed will be negative fast and the left wheel
zero to make the robot turn clockwise until the sensor no
longer detects the obstacle. Instead, according to last rule of
the table, if no obstacle is seen by any of the sensors, the
robot can proceed straight ahead with the maximum speed.

3.3 Fuzzy supervisor
The fuzzy supervisor determines the priority of execution
for the two elementary behaviors according to the proximity
of obstacles. The maximum value of the signals provided by
proximity sensors (henceforth called max_prox), and the
reference speed for the two wheels, provided by FLC1 and
FLC2 respectively, are the input signals of the supervisor,
whereas the outputs are the commanded speeds sent to the
Khepera.
If max_prox is close, an obstacle is dangerously close and
thus, independently from the actual location of the target,
the robot has to avoid the collision. In this case, absolute
priority is assigned to the avoid obstacles behavior, while
reach the target is neglected (the outputs of the supervisor
coincide with those of FLC2). If max_prox is far, then
robot’s path is clear and only the reach the target behavior
is executed (the outputs of the supervisor coincide with
those of FLC1). In every intermediate condition between
the two mentioned extremes, the supervisor will perform a
fusion of the two FLCs blending their outputs to achieve a
safe navigation toward the target.
It must be pointed out that even if many other strategies for
switching between these two simple behaviors could be
easily conceived, we adopted a hierarchical fuzzy approach
envisioning future research developments including the
integration of multiple and more advanced behaviors in the

proposed scheme. As stated in [3], in such cases fuzzy
supervision offers a transparent and extremely effective
solution based on hi-level linguistic decision rules.

4 Experimental results
The navigation experiments have been conducted in a
1.2 ×1.2 m2 arena with white obstacles (undetectable to the
camera) and a red spot representing the target that the
Khepera has to reach. In fig. 6, it is shown a panoramic
view of the robot environment. A fine tuning of the fuzzy
controllers has been realized monitoring the navigation
performances of the Khepera with Control Desk. We want
to underline here that these modifications can be performed
quite easily, changing the parameters in the Simulink
scheme, repeating the experiment and observing the
behavior of the robot until good results are obtained. Using
high level software such as Matlab/Simulink and Control
Desk, this trial and error procedure is greatly simplified.
Fig. 7 shows the navigation performances of the robot. The
robot path has been reconstructed using the information
provided by the camera and then has been overlaid with the
map of the environment (which is not exploited for control
purposes). The real proportions among obstacles, target and
Khepera have been faithfully reproduced. After some
adjustments of the MF positions, the robot is able to
successfully navigate in its environment and reach the
target, despite of changing light conditions, obstacles and
noise. In order to show the performance of the fuzzy
supervisor, Fig. 8 a shows the trend of max_prox and fig.8 b
the right wheel reference speeds provided by the avoid
obstacles and the reach the target behavior and by the fuzzy
supervisor. For sake of clarity, even if the whole experiment
lasts about 40 seconds, in both figures just the time interval
ranging from 4 to 10 seconds is considered. The path of the
robot during this period of time is enlightened in grey in
fig. 7. Fig. 8a also reports the membership functions of
max_prox, close and far, used for the fuzzy supervisor.
From 4 to about 6.5 seconds, max_prox is far and the output

of the supervisor coincides with the output of FLC1. The
robot is just turning on itself to point toward the target and
no obstacles are in its neighborhood. The two peaks in fig.
8 a refer to the two first obstacles the robot finds on its way.
The first obstacle is not very close and the fuzzy supervisor
blends the output of FLC1 and FLC2 so that the robot just
slightly deviates from the straight path to the target. The
second obstacle is directly on robot’s path and is
approached around time instant 9 s. In this case, max_prox
is close and, as can be seen in fig. 8 b, the output of the
supervisor is equal to the output of FLC2 in order to avoid
the collision.

5 Conclusions
This paper has described the experimental implementation
of a behavior-based fuzzy control system for autonomous
navigation of a mobile robot in an unknown and dynamic
environment. For the real-time implementation of this
control architecture, a rapid prototyping platform has been
developed using Matlab/Simulink hi-level programming
environment, in order to relieve the designer from coping
with tangled hardware and software issues and to permit a
straightforward design and an intuitive monitoring of the
experiment. The proposed results enhance the effectiveness
of the fuzzy-based autonomous navigation strategy and,
most importantly, prove the distinctive potentialities of the
developed experimental platform in terms of modularity,
transparency, and easiness of design in view of more
challenging experiments. In fact, in order to increase robot
skills to solve difficult tasks in complex scenarios, future
research will be devoted to the implementation of further
behaviors, to the use of a broader sensor suite (e.g. camera
on board, ultrasonic sensors) and to the cooperation among
different robots. Thanks to the flexibility of the proposed
platform, a noticeable reduction of the development time is
expected.

Fig.6 – Panoramic view of the Khepera environment.

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

700

800

900

1000

1100

target

Khepera
(initial position)

path

obstacles

x coordinate, [mm]

y
co

or
di

na
te

, [
m

m
]

Fig.7 – Measured path of the mobile robot in real world

environment

4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

time, [s]

m
ax

_p
ro

x,
 [p

u]

0 1
Degree of membership

FAR

CLOSE

(a)

4 5 6 7 8 9 10

-32

-16

0

16

32

48

64

80

96

time, [s]

ri
gh

t w
he

el
 s

pe
ed

, [
m

m
/s

]

reach the target

avoid obstacles

commanded right wheel speed

(b)

Fig.8 - Maximum value of the signals provided by proximity
sensors (a) and right wheel reference speeds provided by the

avoid obstacles and the reach the target behavior and by the fuzzy
supervisor (b)

References:
[1] Monti A., Santi E., Dougal A. R., Riva M, Rapid

prototyping of digital controls for power electronics,
IEEE trans. on Power Electronics, vol.18., no.3, may
2003.

[2] Brooks R. A., A robust layered control system for a
mobile robot, IEEE Journal of Robotics and
Automation, , vol. RA-2, no.1, march 1986.

[3] Driankov D., Saffiotti A., Fuzzy logic techniques for
autonomous vehicle navigation, Springer Verlag.

[4] Er M. J., Lim M. T., Lim H. S., Real time hybrid
adaptive fuzzy control of a SCARA robot,
Microprocessor and Microsystems 25, pages 369-378,
2001.

[6] Braitenberg V,.Vehicles, Experiments in synthetic
psychology, The MIT press, 1984.

[7] Nolfi , Floreano D, Evolutionary robotics, The biology,
intelligence and technology of self-organizing machines,
The MIT press, Cambridge Massachusetts.

[8] Murphy R., Introduction to AI robotics, The MIT press,
Cambridge Massachusetts.

[9] Chen L., Chiang C., New approach to intelligent control
systems with self-exploring process, IEEE trans. on
Systems Man and Cybernetics, part B., vol.33, no.1,
February 2003.

[10] Ye C., Yung N. H. C., Wang D., A fuzzy controller
with supervised learning assisted reinforcement learning
algorithm for obstacle avoidance, IEEE trans on Systems
Man and Cybernetics, part B., vol.33, no.1, February
2003.

[11] Lee S. I., Cho S. B., Emergent behaviors of a fuzzy
sensory-motor controller evolved by genetic algorithms,
IEEE trans. on Systems Man and Cybernetics, part B.,
vol.31, no.6, December 2001.

[12] Serajy H., Howard A., Behavior-based robot
navigation on challenging terrain: a fuzzy logic
approach, IEEE trans. on Robotics and Automation,
vol.18 no.3 June 2002.

[13] Rusu P., Petriu E., Whalen T., Cornell A., Spoelder H.,
Behavior-based neuro-fuzzy controller for mobile robot
navigation, IEEE trans. on Instrumentation and
Measurement, vol.52 no.4 August 2003.

[14] Li H., Yang S. X., A behavior-based mobile robot with
a visual landmark-recognition system, IEE/ASME trans.
on Mechatronics, vol.8 no.3 September 2003.

[15] Khepera II user manual v1.1-K-Team S.A. 2001.

