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Abstract- In this paper a robust and adaptive Temporal Difference learning based MLP (TDMLP) neural 
network for power system Load Frequency Control (LFC) is presented. Power systems, such as other 
industrial processes, are nonlinear and have parametric uncertainties that for controller design had to take 
the uncertainties into account. For this reason, in the design of LFC controller the idea of TDMLP neural 
network is being used. Some simulations with two interconnections are given to illustrate proposed method. 
Results on interconnected power system show that the proposed method not only is robust to increasing of 
load perturbations and operating point variations, but also it gives good dynamic response compared with 
traditional controllers. It guarantees the stability of the overall system even in the presence of generation 
rate constraint (GRC). To evaluate the usefulness of proposed method we compare the response of this 
method with RBF neural network and PID controller. Simulation results show the TDMLP has the better 
control performance than RBF neural network and PID controller. 
 
 
 Introduction 
In power systems, one of the most important 
issues is the load frequency control (LFC), which 
deals with the problem of how to deliver the 
demanded power of the desired frequency with 
minimum transient oscillations [1, 2]. Whenever 
any suddenly small load perturbations resulted 
from the demands of customers occur in any 
areas of the power system, the changes of tie-line 
power exchanges and the frequency deviations 
will occur. Thus, to improve the stability and 
performance of the power system, generator 
frequency should be setup under different 
loading conditions. For this reason, many control 
approaches have been developed for the load 
frequency control. Among them, PID controllers 
[3], optimal [4], nonlinear [5] and robust [6-8] 
control strategies, and neural and/or fuzzy [9-11] 
approaches are to be mentioned. An industrial 
plant, such as a power system, always contains 
parametric uncertainties. As the operating point 
of a power system and its parameter changes 
continuously, a fixed controller may no longer be 
suitable in all operating conditions. In order to 
take, the parametric uncertainties into account, 
several papers have been published in the 
concept of variable structure systems [12], 

various adaptive control techniques [13] to the 
design of load frequency control. In this paper, 
because of the inherent nonlinearity of power 
system a new artificial neural network based 
intelligent controller, which has the advance 
adaptive control configuration, is designed. The 
proposed controller uses the capability of the 
MLP neural network based on Temporal 
Difference (TD) learning for the design of LFC 
controller. In this work, for the design of MLP 
neural network the idea of TD learning and 
applying it to nonlinear power system is being 
used. The motivation of using the TD learning 
for training of the MLP neural network is to take 
the large parametric uncertainties into account so 
that both stability of the overall system and good 
performance have been achieved for all 
admissible uncertainties. Moreover, the proposed 
controller also makes use of a piece of 
information which is not used in conventional 
controllers (an estimate of the electric load 
perturbation, i.e. an estimate of the change in 
electric load when such a change occurs on the 
bus). The load perturbation estimate could be 
obtained either by a linear estimator, or by a 
nonlinear neural network estimator in certain 
situations. It could also be measured directly 



from the bus. We will show by simulation that 
when a load estimator is available, the neural 
network controller can achieve extremely 
dynamic response. In this study, the TDMLP 
neural network is considered for control 
interconnected power system with two areas with 
power tie-lines to supply different consumers. 
The simulation results obtained are shown that 
the proposed controller not only has good 
performance in the presence of the generation 
rate constraint (GRC), but also gives good 
dynamic response compare to RBF neural 
network and PID controller. This paper is 
organized as follows: Section 2 describes the 
power system and its mathematical model. In 
section 3, the whole structure of the proposed 
TDMLP neural network is shown. Section 4 
describes the application of TDMLP in LFC. 
Section 5 shows the simulation results that have 
been compared with RBF neural network and 
PID controller. Some conclusion and remarks is 
discussed in section 6. 
 
Mathematical Model of Power System 
Plant 
 
The power systems are usually large-scale 
systems with complex nonlinear dynamics. 
However, for the design of LFC, the linearized 
model around operating point is sufficient to 
represent the power system dynamics [1]. Fig.1 
shows the block diagram of i-th area power 
system. Each area including steam turbines 
contains governor and reheater stage of the steam 
turbine. According to Fig.1, time-constants of the 
riT , tiT and giT are considered for the reheater, 

turbine and governor of the thermal unit, 
respectively. Wherever the actual model consists 
of the generation rate constraints (GRC) and it 
would influence the performance of power 
systems significantly, the GRC is taken into 
account by adding a limiter to the turbine and 
also to the integral control part all of areas to 
prevent excessive control action. The GRC of the 
thermal unit is considered to be 0.3 p.u. per 
minute ( 005.0=δ ). All areas have governors 
with dead-band effects which are important for 
speed control under small disturbances. The 
governor dead-band is also assumed to be 0.06%. 
Based on the suitable state variable chosen in 
Fig. 1, the following state-space model will 
be obtained: 
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Figure 1. Block-Diagram of the ith area power 
system 
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Where x is a 12 by 1 state vector, 
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The submatrices 12A  and 21A are similar. The 
outputs are defined to be the frequency 
deviations ( iF∆ ) and the deviation of 
transmission power line ( tieP∆ ). As the important 
characteristics of power systems such as: 
changing of the generation, loading conditions 
and system configuration are. Therefore, 
parameters of the linear model described 
previously, depend on the operating points. In 
this paper the range of the parameter variations 
are obtained by change of simultaneously nT , 12T  
by 50% and all other parameters by 20% of their 
typical values which are given below: 



20=piT , 120=piK , 3.0=tiT , 

1.0== giHi TT , 10=riT , 4.2=iR ,  

5.021 == KK , 0707.012 =T  
Denoting the ith parameter by ia the parameter 
uncertainty is formulated as: 

iiii aaa δ+= 0 , 1≤iδ , ,...2,1=i , 
20

ii
i

aa
a

+
= , 

0iii aaa −=∆                                                 (2) 

Where ia  and ia  stand for the maximum and 

minimum value, respectively. Table 1 shows the 
system uncertainties with their nominal, 
maximum and minimum values. 
 

Table 1. System uncertainties 
Uncer. ia  

0ia  
ia  ia∆  

giT
1  8.33 10.42 12.5 2.07 

RTgi

1  2.983 4.7 6.51 1.81 

tiT
1  2.78 3.473 4.167 0.6935 

riT
1  0.0833 0.1042 0.125 0.0208 

p

p

T
K  4 8 12 4 

piT
1  0.033 0.0665 0.1 0.0335 

12T  0.049 0.0707 0.093 0.0223 

 
Temporal Difference Based MLP neural 

Networks 
 

Most of new learning algorithms like 
reinforcement learning, Q-learning and the 
method of temporal differences are characterized 
by their fast computation and in some cases 
lower error in comparison with the classical 
learning methods. Fast training is a notable 
consideration in some control applications. In 
reinforcement learning, there is no teacher 
available to give the correct output for each 
training example, which is called unsupervised 
Learning. The output produced by the learning 
agent is fed to the environment and a scalar 
reinforcement value (reward) is returned. The 
learning agent tries to adjust itself to maximize 

the reward [15-17]. Often the actions taken by 
the learning agent to produce an output will 
affect not only the immediate reward but also the 
subsequent ones. In this case, the immediate 
reward only reflects partial information about the 
action. This is called delayed-reward [18][19]. 
Temporal difference (TD) learning is a type of 
reinforcement learning for solving delayed-
reward prediction problems. Unlike supervised 
learning, which measures error between each 
prediction and target, TD uses the difference of 
two successive predictions to learn that is Multi 
Step Prediction. The advantage of TD learning is 
that it can update weights incrementally and 
converge to a solution faster [20]. In a delay-
reward prediction problem, the observation-
outcome sequence has the form 

zxxxx m ,,...,,, 321  where each tx  is an 
observation vector available at time mtt ≤≤1 ,  
and z  is the outcome of the sequence. For each 
observation, the learning agent makes a 
prediction of z , forming a sequence: 

mPPPP ,...,,, 321 .  
Assuming the learning agent is an artificial 
neural network, update for a weight w  of the 
network with the classical gradient descent 
update rule for supervised learning is: 

Ew w∇−=∆ α                                       (3) 
Where α  is the learning rate, E  is a cost 
function and Ew∇  is the gradient vector. A 
simple form of E  can be  

( )
2

12
1∑

=

−=
m

t
t zPE                                  (4) 

where tP  and z have been described at above. 
From equations (3) and (4), w∆  will be 
calculated as follows: 

( ) PzPw w

m

t
t ∇−−=∆ ∑

=1
α                         (5) 

in [21] Sutton derived the incremental updating 
rule for  equation (5) as: 

∑
=

+ ∇−=∆
t

k
kwttt PPPw

1
1 )(α , mt ,...,2,1=  and 

zP
def

m =+1                                                     (6) 
To emphasize more recent predictions, an 
exponential factor λ  is multiplied to the gradient 
term: 

kw

t

k
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−
+

1
1 )( λα            (7) 



Where 10 ≤≤ λ . This results in a family of 
learning rules, ( )λTD , with constant values of λ . 
But there are two special cases: 
First, when 1=λ , equation (7) falls back to 
equation (6), which produces the same training 
result as the supervised learning in Equation (5). 
Second, when 0=λ , equation (7) becomes  

kwttt PPPw ∇−=∆ + )( 1α                           (8) 
Which has a similar form as equation (5). So the 
same training algorithm for supervised learning 
can be used for ( )0TD . 
 

TDMLP Neural Network 
Recently, computational intelligence systems and 
among them neural networks, which in fact are 
model free dynamics, has been used widely for 
approximation functions and mappings. The 
main feature of neural networks is their ability to 
learn from samples and generalizing them, and 
also their ability to adapt themselves to the 
changes in the environment. In fact, neural 
networks are very suitable for problems in the 
real word. They can map from a set of patterns in 
the input space to a set of desired vales in the 
output space. In other words, neural networks try 
to emulate the learning activities of the human 
brain, but in a very simplified fashion. These 
networks are composed of many simple 
computational units called neurons, which have 
fast responses to the inputs. These networks with 
participation in an especial kind of parallel 
processing which provide possibility of modeling 
any kind of nonlinear relations. More accuracy, 
robustness, generalized capability, parallel 
processing, learning static and dynamic model of 
MIMO systems on collected data and its simple 
implementation are some of the important 
characteristics of neural networks that caused 
wide application of this technique in different 
branches of sciences and industries, especially in 
power systems and design of the nonlinear 
control systems [8]. 
Multilayer perseptrons are an important 
class of neural networks that have been 
applied successfully to solve some difficult 
and diverse problems by training them in a 
supervised manner with some learning 
algorithms such as error correction learning 
rule, delta rule and etc.   
The classical generalized delta rule for 
multi-layer feedforward network is [23]: 

l
T
ll yw δα 1−=∆  (9) 

Where lw  is a nm×  weight matrix 
connecting layer 1−l  and l , m is the size of 
layer 1−l and n is the size of layer l , α  is 
the learning rate (a scalar), T

ly 1−  is transpose 
of the column vector 1−ly  which is the 
output in layer 1−l , lδ  is a column vector of 
error propagated from layer l  to 1−l , 0=l  
for the input layer. For output layer and for 
hidden layer the vector of backpropagated 
error, lδ , is deferent and defined as: 

( ) ( )
( )
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=
++ layerhidden  a is  if    *'

layeroutput an  is  if    '*

1l1 lwnetf
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l δ

δ

Where ( ).'lf  is the derivative of transfer 
function, lf , in layer l , lnet  is the weighted sum 
in layer l , 1l+δ  is the delta value backpropagated 
from the upper layer of layer l , * denotes the 
element-wise vector multiplication, T is the 
target vector, Z is the output vector. To applying 
TD learning to the multi-layer feedforward 
network, we extract the term ( )ZT −  from the 
original lδ  and obtain the *

lδ as a new delta rule. 

So we define *
1+kδ as: 

( )[ ]lklkk netfdiag +++ = '*
1δ                        (11) 

 
Where diag is the diagonal matrix and l is the 

output layer. If l is a hidden layer, equation (11) 
can be written as: 

( ) *
11

* .*' ++= lllll netf δωδ                             (12) 
With the new delta, equation for change of 
each weight is rewritten as: 

[ ] [ ] [ ] ( ) [ ] [ ]( )jlil
T

jlilijl yZTy *
11 . δαδαω −− −==∆

Where [ ]jl
*δ  is the jth element in vector *

lδ  and 

[ ]ily 1−  is the ith element in vector 1−ly . Unlike 
the original delta which is a vector 
backpropagated from an upper to a lower layer, 
now the new delta, *

lδ  is a nm×  matrix where 
m is the size of output layer and n  is the size of 
layer l . The error term ( )ZT −  is needed for 
calculation of every weight increment. 
Comparing gradient decent in supervised 
learning in equation (5) and the backpropagation 
with new delta in equation (11) ( )tPw∇ , the 
gradient term at time t for weight 'w  is: 

[ ] [ ]( )Tjliltw yP *
1' δ−=∇                                (14) 



Where ( )[ ]ijl lww ='  is the ijth element in the 

weight matrix lw at the time t. By 
substituting this result to the formula of 

( )λTD  learning in equation (7), we have:  

[ ] ( ) ( )[ ] ( )[ ]( )∑
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−
−

+ −=∆
t

k

T
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ktT
ttijlt kkyPPw

1
,:
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11 δλα

Where ltw∆ is the matrix of increment of weight 
connecting layer l  and 1−l  for prediction tP . 
The term inside summation is called the history 
vector, denoted by ( )[ ]ijl th . We now obtain 

updating rules of TD learning by 
backpropagation. The weight update is 
performed by equation (15) with the new delta. 
 

Training Procedure 
 
Compared to the original backpropagation 
algorithm, the new procedures for ( )λTD  
learning requires some more storage for keeping 
the following values: 
1. The previous output vector, 1−tP , at time t, 
which is used in computing every weight change. 
2. The history vector, 
( ) ( )[ ] ( )[ ]∑ −

−= iljl
kt

l kykjith 1
*,, δλ  for each 

weight-connecting ith node in layer 1−l  to jth 
node in layer l . It has the same size as the output 
vector. Each weight shall have its own history 
vector. The training procedure involves 3 stages 
(at time t): 
1. Feedforward: calculation of new prediction tP . 
2. Weight update: calculation of weight 
increments by equation. (15) using the history 
terms at time 1−t . 
3. Backprop: calculation of the new deltas at 
time 1+t ; ( )

*
1+tlδ , for each layer l , starting from 

the output layer. The history term is updated by: 
( ) ( )[ ] ( )[ ] ( )ililjll jithtytjith ,,111,, 1

* −+++= − λδ  

 
Design of TDMLP Neural Network for 

Power System LFC 
 
The objective of the controller design in 
interconnected power system is damping of the 
frequency and tie-line power deviations 
oscillations, stability of the overall system for all 
admissible uncertainties and load disturbances. 
Fig.2 shows the block diagram of the closed-loop 
system, consists of TDMLP controller. The 
simulation results on a single machine power 

system show that the performance of MLP neural 
network is much better than conventional PID 
controllers. Therefore, for the design of the 
nonlinear LFC controller in two areas power 
systems the MLP neural network is being used. 
Since the objective of LFC controller design in 
interconnected power system are damping the 
frequency and tie-line power deviations with 
minimizing transient oscillation under the 
different load conditions. Thus, frequency 
deviations, tie-line power deviations and the load 
perturbation are chosen as MLP neural network 
inputs. Moreover, in order to evaluate the control 
signal (u), the MLP neural network controller 
makes use of a piece of information which is not 
used in the conventional and modern controller 
(an estimate of the load perturbation iDP̂∆ ). In 
general, the load perturbation of the large system 
is not directly measurable. Therefore, it must be 
estimated by a linear estimator or by a nonlinear 
neural network estimator, if the nonlinearities in 
the system justify it. Such an estimator takes as 
inputs a series of k samples of the frequency 
fluctuations at the output of the generator 
[ ]TknFnFnF )1(...)1()( +−∆−∆∆ , and 
estimates the instantaneous value of the load 
perturbation based on this input vector. The 
implementation of such an estimator is beyond 
the scope of this paper. Here, we assume that the 
load estimate iDP̂∆  is available, i.e. 

)()(ˆ nPDnDP ∆=∆ .Thus, frequency deviations, 
tie-line power deviations and the load 
perturbation are chosen as the MLP neural 
network inputs. The outputs of the neural 
network are the control signals, which are 
applied to the governors. The data required for 
the MLP neural network training is obtained 
from the TDL design in different operating 
conditions and under various load disturbances. 
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Figure 2. Block-Diagram of the TDMLP neural 

network applied to LFC 



Simulation Results 
 

For small sampling time, it can be shown that the 
discrete-time model is almost the same as the 
continuous-time model. Hence, the simulations 
have been carried out in MATLAB software 
using continuous-time domain functions. In this 
study, the application of TDMLP neural 
controller for LFC in two areas power system is 
investigated. The performance of this method is 
compared with the RBF neural controller and 
PID controller, which has been widely used in 
power system. Fig. 3 to 5 depicts performances 
of the TDMLP, RBF and PID controllers when 
different load step disturbances in two areas are 
applied to the system. Fig.3 shows the tie-line 
power deviations when a 2% and 0.5% load step 
disturbances are applied in areas 1 and 2, 
respectively. Fig.4 shows the performances of 
controllers with applying a 0.5% and 1.5% load 
step disturbances to 1 and 2 areas, respectively, 
whereas the parameters are decreased from their 
nominal values to the minimum values. Fig.5 
shows the responses of the controllers when the 
parameters are increased from their nominal 
values to their maximum values and a 2% and 
0.8% load step disturbance are applied to 1 and 2 
areas, respectively. To show the performance of 
the proposed controller, we run several tests, not 
shown here. 
The simulation results obtained show that the 
proposed TDMLP neural network is very 
effective and not only has good performance, 
even in the presence of the GRC, but also 
ensures the stability of the overall system, 
especially when the parameters and the operating 
conditions of the system are changed. From these 
figure, it is seen that the proposed method is 
superior compared to other controllers against to 
increasing of the step load disturbances in the 
areas of power systems, especially when the 
system parameters are changing. 
 

0 10 20 30 40 50 60 70 80 90 100
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Time,[Sec]

D
el

ta
. P

12

TDMLP NN 

PID Controller 

RBF Neural Network 

 
Fig. 3- The performance of controllers with nominal 

parameters 
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Fig. 4a- The performance of the controllers for 
frequency deviations with minimum parameters 
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Fig. 4b- The performance of the controllers for 
frequency deviations with minimum parameters 
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Fig. 5a- The performance of the controllers for 

frequency deviations with maximum parameters 
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Fig. 5b- The performance of the controllers for 

frequency deviations with maximum parameters 
 



Conclusion 
This study shows an application of the neural 
network to automatic generation control in the 
power system. In this paper, a TDMLP neural 
network load frequency control has been 
proposed to improve the performance and 
stability of the power system. This control 
strategy was chosen because the power systems 
involve many parametric uncertainties with 
varying operating conditions. In this work, 
transient behavior of the frequency of each area 
and tie-line power deviations in the power 
system with two areas is considered under any 
load perturbations in any area. The simulation 
results show that proposed controller is effective 
and can ensure that the overall system will be 
stable for all admissible uncertainties and load 
disturbances, also The TDMLP controller can 
achieve good performance even in the presence 
of GRC, especially when the system parameters 
are changing. And the performance of the 
proposed controller is better than RBF neural 
network and PID controller to the load 
disturbances at any area in the interconnected 
power system. 
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