
Reconstruction of Dynamical Systems using
Constructive Neural Networks

Burkhard v. Stackelberg, Viktor Avrutin, Paul Levi,
Michael Schanz, Georg Wackenhut

Institute of Parallel and Distributed Systems,
University of Stuttgart,

Universitätstrasse 38, D-70569 Stuttgart,
Germany

Abstract

In this work, we present a modern neural network construction method able to build approximations to dynamical systems efficiently
while choosing the model size, here the number of neurons, automatically. There is no upper bound as in pruning methods. We present a
rather simple approach combining features from Dynamic Node Creation, Cascade Correlation, and Maximum Covariance, and show their
capabilities in reconstructing the dynamical behavior of chaotic systems such as the Lorenz and the Rössler system.

Keywords: Neural networks, Dynamical systems, Vector field reconstruction, Dynamic node creation.

I. Introduction

The reconstruction of vector fields of deterministic dynamical systems discrete or continuous in time from time series
data is important whenever dynamical processes are observed, where the underlying mathematical description on the
microscopic scale is incomplete or even lacking [KKM98], [GL94]. Here, one can distinguish mainly between two cases:
On the one hand, there are pure phenomenological models on the macroscopic scale, such as EEG, MEG or ECG
models in physiology ([FKH92], [Nun81]), stock index models in finance theory or for instance net traffic models in
the field of computer science. On the other hand there are models, where the underlying mathematical description
on the microscopic scale is partially known, like some problems in geophysics, meteorology or biology. In both cases,
a construction or at least approximation of the corresponding vector field is useful, because the reconstructed vector
field can be investigated further in more detail, either by numerical simulation or in some cases even analytically. One
possible approach for vector field approximation is given by the theory of neural networks.
The use of neural networks in computer science rose with the abstract analysis of neural information processing through
the biologist D. O. Hebb [Heb49] in 1949. In the early years, they were mainly seen as adaptable logic elements and
pattern classifiers, as logic seemed the principal issue of human intelligence in these years, and so most neural networks
were based on binary neurons.
Neural networks as universal approximations to continuous-valued functions are in use since 1974 [Wer74], and became
popular in the 1980s [RHW86]. For a proof of approximation universality see for instance [HSW89]. Some efforts are
done towards using neural networks in combination with systems discrete ([Jor86], [Elm90]) and continuous ([Pin87],
[Pea89]) in time, whereas other researchers focused on constructive ([Ash89], [FL90a], [Pre97], [Leh99]) and destructive
([LDS90], [HS93], [MS89], [LLM94]) topology optimization. In this work, we present a combination of a constructive
approach with time-series prediction using maps and ordinary differential equations. The constructive approach of
dynamical insertion of neurons into a network has been investigated by a notable number of researchers. Some of their
work is used here.
Since T. Ash [Ash89] developed a method of Multilayer Perceptron (MLP) construction through Dynamic Node Creation
(DNC), various MLP construction methods have been proposed, among them the popular Cascade Correlation Learning
Architecture (CasCor) by Fahlman and Scott [FL90a], [FL90b], which is most appropriate to classification problems.
By the time more methods based on dynamical creation of neurons are developed. Some significant examples on the
field of approximation are Cascade/Cand architecture [Pre97], Constructive Back-Propagation (CBP) [Leh99] as well as
Brain Construction [HvS01]). The common family structure, which underlies all these methods, is revealed in the last
time ([KY97a], [Sta03]). Therefore the modern construction methods are expected to gain more and more popularity.
In this article, a construction strategy is presented built up of elements of DNC, CasCor and CBP. Thereby, DNC
determines the way how neurons are inserted into the network and trained, whereas CasCor and CBP are used for
initialization of the neurons. It can be shown, that a short covariance training is sufficient to improve the network’s
performance. DNC is used, as it adapts the whole network for best training and generalization results.
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This paper is organized as follows: In section II, we describe the task of reconstruction of dynamical systems from time
series using neural networks. Section III describes the developed neural approach in detail, while section IV presents
the experimental setup and discusses the results. In sections V and VI we close our article by summarizing and giving
an outlook of what enhancements to our approach are possible.

II. Task Definition

Many dynamical systems come as discrete maps governed by a rule

~q(t + 1) = ~f(~q(t)) = ~q′(t), (1)

or as ordinary differential equations (ODEs) governed by

~̇q(t) = ~f(~q(t)) = ~q′(t), (2)

whereby ~q(t) denotes the state vector of the system at time t and the target vector ~q′(t) = ~f(~q(t)) represents its time
evolution, meaning the next state in (1) and the state vector derivative with respect to time in (2). Concerning the vector
function in the equation of motion, there is not much difference between these two classes of dynamical systems, so both
classes can be investigated by almost the same methods. Therefore, we focus our studies to continuous systems, because
the methods needed for discrete systems are included within. Note that, the values ~q′(t) can be easily constructed from
time-series data ~q(t), be it discrete or continuous in time [ASSW02].
The main task of our work is the development of an approach, which fits a neural model function ~f(~q(t)) to a given
set of time-series data. Related work is considered in [Gou91], [Gou92], and [GL94]. In former works [ASSW02],
we investigated neural time series reconstruction using a fixed neural topology with polynomial input neurons. The
advantage of this approach is, that the approximation always has a simple analytical form, and it is most appropriate,
where the transitional rule is known or reasonably supposed to be polynomial. But this approach has its limitations:
the order of the polynomial has to be known, and the number of neurons grows exponentially with the polynomial order.
Furthermore, the network cannot be built using a single type nonlinear neuron, as functions additively composed of
polynomials never exceed the highest polynomial order of its components.
Therefore, we present in this work an alternate approach using a single type nonlinear neuron to build a layered feed-
forward network including one nonlinear hidden layer. Here, we have used neurons with a tanh transfer function,
although others may be used also. This network is dynamically created by stepwise insertion of hidden neurons, so that
the size of the network is chosen according to the needs. As a result of the insertion method, the number of neurons
only grows linearly in each step.

III. Description of the Method

A. Construction of the Network

The algorithm for reconstruction of dynamical systems is based on DNC [Ash89] and consists of the following steps:
1. Generate a network consisting only of input and output neurons and shortcut links, which are initialized as described
in section III-B.
2. Insert a new hidden neuron, connecting it backwards to the input, connecting it forwards to the output. The neuron
will be initialized using the Maximum Covariance short candidate training as described in section III-C.
3. Train the whole network until training abort criteria are met. We train the network until a given number of cycles
is reached or the residual squared error (RSE) is falling below a given threshold, as described in further detail in
section III-D.
4. Repeat from 2, until at least one construction abort criterion is fulfilled. Here we repeat until a certain number of
hidden neurons is created or the RSE is falling below the threshold given above.
The algorithm of the construction process is presented in Fig. 1, whereas the network topology is illustrated in Figs. 2
and 3. Shown are in-to-hidden, hidden-to-out and shortcut connections. As not in use in our experiments, hidden to
hidden connections are left out. Network links are shown as edges of the graph in Fig. 2 and, for better visibility, as
link knots on the line crossings in Fig. 3, whose direction is defined through the arrows. In both figures, one sees a new
neuron being added from a pool of candidates. A neuron is held from this pool via the initialization procedure described
below.

B. Initialization

As mentioned above, the network consisting of input and output neurons and direct links between them is initialized.
As we choose the output neurons as linear, direct connections may be “trained” analytically solving the linear equation

∂E(wij)
∂wij

= 0 (3)
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Fig. 1. The used network construction algorithm
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Fig. 2. Network topology and node insertion according to the Dynamic Node Creation procedure in its usual graph representation. For
details see text.
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Fig. 3. Network topology and node insertion according to the Dynamic Node Creation procedure, in grid representation. For details see
text.

for all network weights wij , as long as the objective function E(wij) is of second order in the weights, but iterative
methods, as used during fixations, also apply. For this reason, and as implementation is simpler, we decided for the
iterative approach using Resilient Back-propagation (Rprop) [RB92].

C. Maximum Covariance Short Candidate Training

After the network’s initial creation, the construction cycles through creation, initialization and fixation of hidden neurons,
until the whole construction process stops.
For this reason, a pool of identical neurons is created, which only differ by their initialization, done by random. Each of
these neurons is shortly trained to maximize the sum S of absolute covariances

S =
∑

k

∣∣∣∣∣∑
p

(yh
j,p − ȳh

j )(eo
k,p − ēo

k)

∣∣∣∣∣ (4)

where yh
j,p is the candidate’s j output at pattern p, eo

k,p is the output error at output neuron k at the same pattern
and the barred values are the mean over all patterns. The selection of one neuron from this pool is done by choosing
the candidate in order to maximize S. Candidate neurons are connected only backwards at this stage for they do not
influence the output and each other yet. After covariance training, the neuron yielding maximal covariance, is selected
for permanent insertion.
Instead of this approach, alternatives may be used also. While CasCor trains candidates until convergence, which
is inappropriate for continuous approximation tasks, MaxCov as applied to CBP shrinks to a pure selection without
previously training the neurons. Here, a short training of a few cycles is done, for this seems to be sufficient to improve
selection results noticeably with low cost.
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D. Fixation (Main Training)

After insertion and initialization of a new neuron, the network is trained until abort criteria are met, using the main
objective function E, which is the Relative Squared Error RSE as described below. The maximal number of cycles
should be considerably large to assure a good approximation and convergent behavior.
The natural quality measure of a neural network is the objective function it is trained upon. Here, the squared error
is in use, as it is easy to calculate and optimize. If we normalize the squared error, which happens to be the residual
variance of the neural model, by the variance of the measured data, we obtain a quality measure ranging from 0 to 1
on the training set, as a sensitive data model fits the data at least as good as the data’s mean whose residual variance
equals the data variance. The normalized, relative square error RSE may then be expressed as

E = RSE =
ResidualV ariance

DataV ariance
=

∑
k,p(tk,p − yo

k,p)
2∑

k,p(tk,p − t̄ )2
(5)

where tk,p are the measured data, used as teacher input, and yo
k,p the neural model values, k ranging through all output

neurons and p ranging through all patterns (norming factors of the variances cancel out). The value t̄ denotes the mean
of all measured data tk,p. If one wants to take individual variances of individual outputs into account, equation (5)
changes to

E = RSE =
1
d

d∑
k=1

∑
p(tk,p − yo

k,p)
2∑

p(tk,p − t̄k)2
(6)

where d is the output layer’s dimension, k identifies individual output neurons and p the individual patterns, and t̄k
denotes the mean of all measured data corresponding to a given output neuron k.
On test data, the RSE may take values larger than 1, as the test data may differ in their statistics from the training
data in use.

E. Integrating Dynamics

The neural networks described above can be converted to “recurrent” networks by embedding them into a dynamical
system as the transition function that governs the dynamic. In the case of ODEs, the dynamical system then may
be integrated numerically. The target vector ~q′(t) is given in this case by the derivative ~̇q(t). In the case of discrete
dynamics, i. e. maps, the network has just to calculate the system’s state at the next time step, where the target vector
~q′(t) is given by the next state in the time evolution ~q(t + 1). In both cases, it is trained to approximate the original
system function which is known numerically on the time series.
The unknown system function f is calculated using the neural network by identifying the network’s input vector ~x with
the state vector ~q and the network’s output vector ~yo with the target vector ~q′. During the training instead, not the
network output vector, but the teacher input, as in equation (5), is identified by a numerical estimate of ~q′.
The training may be done here without the need of Back-Propagation Through Time (BPTT) [RHW86] or Real Time
Recurrent Learning (RTRL) [WZ89], as the whole time series is known. So, the network can be trained using non-
recurrent methods as if in non-recurrent environments.

IV. Experiments

A. Setup

In our experiments, the vector field is reconstructed by a neural network with up to 40 hidden neurons, whose hidden
layer size is restricted by an error stop criterion: construction is stopped when training error falls below a given level.
The levels of the relative squared error are given as 0.1, 0.01, 0.003, 10−3, 10−4 and 10−5. Construction is also stopped
whenever a construction step does not succeed lowering the network’s training error.
The network topology consists of an input layer, an output layer and a single hidden layer; connections exist from input
layer to hidden and output layer (shortcut connections) and from hidden to output layer. The input and output transfer
functions are identity, whereas the hidden layer transfer function is tanh.
First, linear direct connections are pre-trained obtaining a linear model in the beginning. The network is then trained
using Rprop [RB92] through 1000 cycles to optimize the network after insertion of each neuron selected from 100 pool
candidates in each construction step. Candidates are trained and selected using Conjugate Gradient Descent (CGD)
[PFTV88] training to maximize covariance as described above, using 3 training steps.
The networks have been trained on 1000 equidistant samples, taken from data of the Lorenz 63 system [Lor63] holding
104 points with a time step of dt = 10−2, and from data of the Rössler system [Rös76] holding 105 points with a time step
of dt = 10−3. In both cases, the data stems from the chaotic regime of these systems, whereby the transient dynamics
is not included.
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Fig. 4. The neural network as kernel function in a differential equation connecting the output to the input through an ODE integrator

The Lorenz system [Lor63] is given through the equations

ẋ = σ(y − x)
ẏ = x(r − z) − y
ż = xy − bz

(7)

where σ = 16, r = 45.92 and b = 4.
The Rössler system [Rös76] is given through the equations

ẋ = −(y + z)
ẏ = x + ay
ż = b + z(x − c)

(8)

where a = 0.15, b = 0.2 and c = 10.
Prediction is done for 105 points from the first point of the training example using a time step of dt = 10−3.

B. Example Runs

The construction method can be more clearly understood by examining the evolution of the error functions in example
runs as in Figs. 5(a) and 5(b). In both runs, CGD is used as training method during candidate training. However, they
differ in the training method used during the neuron’s fixation. While the run in Fig. 5(a) is using Rprop, the run in
Fig. 5(b) is using CGD here too. While CGD, as described in [PFTV88], has a fast and stable convergence in every step,
the individual CGD step takes a long time while doing a line minimum search, which evaluates the objective function
several times. In contrast, Rprop takes no long time in each step, as the objective function is calculated only once, but
converging reasonably well, it is not assured to converge at its individual step.
The first L-shaped part of the graph in both figures represents the RSE, short E in the graphs, while shortcut training.
The fast step convergence of CGD is clearly seen. Not seen in the graph is the total training cost.
The seemingly stochastic part in the graph following the first L is the first candidate phase of the training. Here, not
RSE but a transformation ST of S is measured with ST = 1

1+S , for the “error” is decreasing during the training, whilst
S is increasing. Further, 1 is added to the denominator, so that ST never is infinite and resides in the interval of [0, 1],
just as the RSE value. This part of the graph consists of the short MaxCov training ST (S in the graphs) values of
each candidate neuron to be tested for insertion. Candidates are trained sequentially, as the computer on which the
calculation is performed is serial. Each candidate differs from the others by its pseudo-random initialization, hence the
different values of their training curves.
Consequently, a further L-shaped part of the graph represents the fixation RSE of the network after introduction of its
first candidate. Starting with a good candidate initialization, the network will continue just near its last RSE value
and soon fall below.
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Initialization and fixation phases follow in alteration until construction abort criteria are met. As one can see, in the
case of Rprop (Fig. 5(a)), at low errors do the assumptions to good initial step-widths, valid at the beginning of the
construction, not hold any more: The first step takes the network parameters far from the optimum, and many steps
following are needed to return to the previously found (or even another) optimum. At even lower error levels, the
construction may be abandoned, due to the fact, that within a fixed number of training cycles the RSE value falls not
below the RSE value of the predecessor. Obviously, a modification of the original Rprop procedure or the construction
method is needed.

E,S

time

(a) using Rprop

E,S

time

(b) using CGD

Fig. 5. Typical graphs of the objective functions through time. Explanation see text.

C. Results

C.1 Network Sizes

As shown in the left parts of Tabs. I and II, the network sizes cover a large range beginning with 2 hidden neurons at
the highest error level of RSE = 0.1 up to over 20 neurons at the lowest error levels. At the lowest levels, some of the
networks do not reach the scheduled RSE due to the dynamics of Rprop training which jumps off the optimum reached at
the last construction step when training error already has become small. The runs not reaching their nominal error level
are displayed in the right parts of Tabs. I and II. Still, most networks at this point represent reasonable approximations
to the dynamics. Network sizes for successful and abandoned constructions are displayed in combination in the Figs. 6
and 7.
With the help of linear shortcuts, a single hidden neurons with tanh transfer function may approximate multivariate
second-order polynomials of rank 1 asymptotically. Hereby, the rank of the multivariate polynomial is defined as the rank
of the coefficient matrix associated with the second order terms. Higher-rank multivariate second-order polynomials may
be composed from rank 1 polynomials successively, resulting in as much hidden neurons as the rank of the coefficient
matrix. Higher-order polynomials may be approximated also by tanh neurons in a similar way. As the Lorenz field
contains two rank 2 polynomials, ideally 4 hidden neurons should suffice to approximate the field, while the Rössler field
contains only one rank 2 polynomial, thus 2 hidden neurons should do the task.
This number is reached in practice only at the highest RSE levels. The number of hidden neurons depends mostly on
experimental settings as the approximation method with its parameters and convergence rate and on training time. The
optimum is never reached, as it does not exist for finite parameters of the network. This is due to the used function
system which can approximate a polynomial function only asymptotically. In contrast to that, for instance, a neural
network with piecewise linear neurons or neurons which converge to polynomials at finite parameters, maybe through
re-parameterizing the tanh function, can do so.

C.2 System Reconstructions

Figs. 8 to 11 and 12 to 15 show examples of dynamics reconstructed from data of the Lorenz and Rössler system at
several error levels and coming from different network initializations. It turned out, that the Lorenz system is more
tolerant to training error than the Rössler system. We also found out, that prediction quality not only depends on the
squared error where the network converged to, but also on the network initialization which was done by random.
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The Lorenz attractor, for example, is approximated well at an error level of 10−4 to 10−5 by nearly all training runs, as
seen in Fig. 8. At higher levels, more and more runs fail to approximate well, and trajectories typically break down to
more simple attractors such as the two-banded attractor in Fig. 11 or even stable points as in Fig. 10 which originally
were unstable. But still, some attractors reveal a more or less close approximation to the original Lorenz attractor, as
in Fig. 9.
For the Rössler attractor, similar observations can be made. At a nominal error level of 10−5, although not reached by
the runs, most trajectories reveal the typical Rössler dynamics, as seen in Fig. 12. Up to a level of 3 · 10−3, matching
trajectories may be found, as in Fig. 13. At the higher level, deviations from the original dynamics such as periodical
attractors (Fig. 14) or rather strange dynamics (Fig. 15) may be observed.
Obviously, dynamical reconstruction quality cannot be identified exactly with regression quality – at a given regression
quality, reconstruction quality may vary strongly depending on the network’s initialization. Therefore a reconstruction
quality measure is to be developed in further research. For instance, one could measure the maximum distance of points
of one attractor to the other attractor, or compare the power spectra and Lyapunov exponents of the attractors. It is
due to the fact that regression quality is only a measure of how good the data are fit in the points where they are given.
But, once the reconstructed trajectory leaves the original attractor topology, it is not guaranteed to ever return, as long
as the model itself is not guaranteed forcing such trajectories.

V. Summary

In this paper, we presented a method for reconstruction of dynamical systems both continuous and discrete in time
using a modern neural network construction method. We showed that this can be done modularly combining methods
from several fields, i. e. combining the construction method of Dynamic Node Creation (DNC) with neuron initialization
and selection from Maximum Covariance short training (MaxCov short). We also showed that this method is able to
construct a model of a chaotic dynamical system, which reconstructs its behavior reasonably well at a given residual error
level, while the error level left alone gives no definitive measure of the reconstruction quality. The model complexity,
given through the number of hidden neurons used, was adapted according to the needs of approximating at a given error
level.

VI. Outlook

One may wish to improve the method further. As the system is constructed modularly, many of the decisions made are
not fixed. Especially one could test more modern momentum based objective functions [KY97b] instead of covariance
to improve the hidden neuron initialization. One could change the linking and freezing behavior according to a BCA
stylish scheme [HvS01], [Sta03], where in-to-hidden links are only trained for the actual candidate units. Other types of
nonlinear hidden neurons such as neurons with Gauss and abs transfer functions may be used, or even a set of several
neural transfer functions may be tested and used during one construction.
The problem of our approach is, that there is no information about the investigated dynamics accessible from the network
beyond its function system, neither is there an access to a unique description, e. g. in terms of polynomial components.
The solution of this problem will be presented in a further article, where we will describe the extraction of a polynomial
model from a neural network using integral transforms. As one may assume the system’s behavior to be polynomial,
this assumption is confirmed if the transformation contains only a finite number of relevant terms.
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Appendix

RSE

N 10
−

1

10
−

2

3
·1

0−
2

10
−

3

10
−

4

10
−

5

1 0 0 0 0 0 0
2 100 0 0 0 0 0
3 0 22 0 0 0 0
4 0 78 0 0 0 0
5 0 0 39 0 0 0
6 0 0 59 0 0 0
7 0 0 2 2 0 0
8 0 0 0 60 0 0
9 0 0 0 32 0 0

10 0 0 0 6 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 0 0 0
15 0 0 0 0 1 0
16 0 0 0 0 2 0
17 0 0 0 0 7 0
18 0 0 0 0 14 0
19 0 0 0 0 13 0
20 0 0 0 0 4 0
21 0 0 0 0 0 0
22 0 0 0 0 2 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0

RSE

N 10
−

1

10
−

2

3
·1

0−
2

10
−

3

10
−

4

10
−

5

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 1

10 0 0 0 0 0 1
11 0 0 0 0 1 1
12 0 0 0 0 1 3
13 0 0 0 0 4 3
14 0 0 0 0 7 6
15 0 0 0 0 5 12
16 0 0 0 0 15 10
17 0 0 0 0 13 10
18 0 0 0 0 4 10
19 0 0 0 0 3 9
20 0 0 0 0 2 9
21 0 0 0 0 1 16
22 0 0 0 0 0 4
23 0 0 0 0 1 1
24 0 0 0 0 0 2
25 0 0 0 0 0 2

TABLE I

Lorenz run statistics at several error levels. Run frequency over number of neurons N and residual errors RSE. Left part: RSE level

reached. Right part: RSE level not reached, construction abandoned. Description see section IV-B.

N

F

RSE

Fig. 6. Lorenz run statistics at several error levels. Run frequency F over number of neurons N and residual errors RSE. Compare also
Tab. I.
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RSE

N 10
−

1

10
−

2

3
·1

0−
2

10
−

3

10
−

4

10
−

5

1 1 0 0 0 0 0
2 81 0 0 0 0 0
3 17 1 0 0 0 0
4 0 56 2 0 0 0
5 1 29 15 0 0 0
6 0 11 39 2 0 0
7 0 2 26 18 0 0
8 0 1 12 30 0 0
9 0 0 5 20 0 0

10 0 0 1 22 0 0
11 0 0 0 6 1 0
12 0 0 0 2 2 0
13 0 0 0 0 2 0
14 0 0 0 0 3 0
15 0 0 0 0 5 0
16 0 0 0 0 8 0
17 0 0 0 0 4 0
18 0 0 0 0 2 0
19 0 0 0 0 4 0
20 0 0 0 0 1 0
21 0 0 0 0 2 0
22 0 0 0 0 0 0
23 0 0 0 0 0 0
24 0 0 0 0 0 0
25 0 0 0 0 0 0
26 0 0 0 0 0 0

RSE

N 10
−

1

10
−

2

3
·1

0−
2

10
−

3

10
−

4

10
−

5

1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 1 0
7 0 0 0 0 0 0
8 0 0 0 0 0 2
9 0 0 0 0 2 1

10 0 0 0 0 4 1
11 0 0 0 0 5 2
12 0 0 0 0 5 6
13 0 0 0 0 6 8
14 0 0 0 0 8 10
15 0 0 0 0 10 13
16 0 0 0 0 9 15
17 0 0 0 0 8 9
18 0 0 0 0 3 10
19 0 0 0 0 3 8
20 0 0 0 0 1 4
21 0 0 0 0 0 4
22 0 0 0 0 0 0
23 0 0 0 0 1 3
24 0 0 0 0 0 2
25 0 0 0 0 0 0
26 0 0 0 0 0 2

TABLE II

Rössler run statistics at several error levels. Run frequency over number of neurons N and residual errors RSE, Left part: RSE level

reached. Right part: RSE level not reached, construction abandoned. Description see section IV-B.

N

F

RSE

Fig. 7. Rössler run statistics at several error levels. Run frequency F over number of neurons N and residual errors RSE. Compare also
Tab. II.
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x

z

y

Fig. 8. Approximation to the Lorenz 63 attractor. Run with RSE = 10−4. As network initializations vary randomly, each approximation
even at the same RSE level has its individual behavior. At this level, all approximative trajectories follow the Lorenzian topology.

x

z

y

Fig. 9. Approximation to Lorenz 63 attractor. Run with RSE = 10−2. As network initializations vary randomly, each approximation even
at the same RSE level has its individual behavior. At this level, still some approximative trajectories fit the Lorenzian topology well.
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x

z

y

Fig. 10. Approximation to the Lorenz 63 attractor. Run with RSE = 10−2. As network initializations vary randomly, each approximation
even at the same RSE level has its individual behavior. After some Lorenz cycles, this trajectory collapses to a stable point, which in
the original system was unstable.

x

z

y

Fig. 11. Approximation to the Lorenz 63 attractor. Run with RSE = 10−2. As network initializations vary randomly, each approximation
even at the same RSE level has its individual behavior. This trajectory follows a two-banded attractor.
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x

z

y

Fig. 12. Approximation to the Rössler attractor. Run with RSE = 10−5. As network initializations vary randomly, each approximation even
at the same RSE level has its individual behavior. Most trajectories at this RSE level follow the attractor topology just well, though
the nominal level is not reached because of abandoning the construction earlier!

x

z

y

Fig. 13. Approximation to the Rössler attractor. Run with RSE = 3 · 10−3. As network initializations vary randomly, each approximation
even at the same RSE level has its individual behavior. At this level, still some trajectories follow the attractor topology fairly well.
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z

y

Fig. 14. Approximation to the Rössler attractor. Run with RSE = 3 · 10−3. As network initializations vary randomly, each approximation
even at the same RSE level has its individual behavior. This trajectory follows a period-two attractor.

x

z

y

Fig. 15. Approximation to the Rössler attractor. Run with RSE = 10−2. As network initializations vary randomly, each approximation even
at the same RSE level has its individual behavior. This trajectory follows a fancy attractor. For Rössler, even more fancy approximations
of varying “styles” may be found.


