

 1

A Reconfigurable Hardware Implementation

of the One-Dimensional Discrete Wavelet Transform

ALI M. Al-HAJ
Department of Electronics & Computer Engineering,

Princess Sumaya University for Technology,
Al-Jubeiha P.O.Box 1438, Amman 11941,

JORDAN

Abstract �ASIC hardware implementations of the discrete wavelet transform are required to cope with
the intensive real-time computations of the transform. In this paper, we describe a parallel
implementation of the wavelet transform using one type of reconfigurable ASICs; Filed Programmable
Gate Arrays (FPGAs). The implementation is based on reformulating the transform using the distributed
arithmetic and ployphase decomposition techniques, so that the ample inherent parallelism of the
transform can be well exploited by the fine-grained parallel architecture of Virtex FPGAs. Performance
results demonstrate the applicability of FPGAs with distributed arithmetic and polyphase
decomposition to achieve the required high computational speeds of the discrete wavelet transform.

Key words:—Discrete wavelet transform, FPGA implementation, Polyphase filters, Distributed arithmetic.

1 Introduction
The discrete wavelet transform is a powerful new
mathematical method with a broad spectrum of
potential applications [1]. It has already been used
successfully in signal processing [2] and
numerical analysis [3], among many other audio-
visual applications. In particular, the area of data
compression has benefited incredibly from the
wavelet transform [4]. However, the transform 's
high computational requirements may limit its
wide-spread, especially in applications requiring
real time performance. Consequently, there has
been a great demand on high-speed computing
devices to meet the real-time computational
requirements of the transform.

 Fortunately, the discrete wavelet transform is
inherently parallel, and it lends itself to hardware
implementations on VLSI devices [5]. Indeed,
many VLSI implementations of the transform have
appeared in literature [6-9], however, most of the
proposed architectures require complex control
units, and are not easily scaled up for different
wavelets filters and different octave levels.

Recently, Filed programmable gate arrays
(FPGAs) have become an attractive
implementation platform for many digital signal
processing algorithms [10-13]. FPGAs are
programmable ASICs, offer intermediate
capabilities between those offered by custom
VLSI ASICs and digital signal processors.
Indeed, programmability of FPGAs makes them a
perfect choice for implementing the discrete
wavelet transform since this would allow easy
modification of different wavelet types.

 In this paper, we describe a parallel FPGA
implementation of the discrete wavelet transform
using Virtex FPGAs [14]. The implementation is
based on achieving high execution speeds by
exploiting the abundant inherent parallelism of the
transform using the distributed arithmetic [15] and
plolyphse decomposition [16]. Section 2 reviews
the Mallat's pyramid algorithm. The
implementation is described in section 3, and
simulated in section 4. Results are presented in
section 5 and conclusions in section 6.

mailto:ali@psut.edu.jo
http://www.psut.edu.jo/

 2

 2 Mallat’s Pyramid Algorithm
Wavelets are special functions which, in a form
analogous to sines and cosines in Fourier analysis,
are used as basal functions for representing
signals. The coefficients of the discrete wavelet
transform can be calculated recursively and in a
straight forward manner using the well-known
Mallat’s pyramid algorithm [17]. Based on
Mallat’s algorithm, the discrete wavelet
coefficients of any stage can be computed from the
coefficients of the previous stage using the
following iterative equations:

)1().........2()1,(),(0 nmhjmWjnW
m

LL −−=∑

)2)........(2()1,(),(1 nmhjmWjnW

m
LH −−=∑

Where WL(n,j) is the nth scaling coefficient at the
jth stage, WH(n,j) is the nth wavelet coefficient at
the jth stage, and h0(n) and h1(n) are the dilation
coefficients corresponding to the scaling and
wavelet functions, respectively. In order to
reconstruct the original data, the DWT coefficients
are upsampled and passed through another set of
low pass and high pass filters, which is expressed
as

)3(....................).........2()1,(

)2()1,(),(

1

0

lngjlW

kngjkWjnW

l
H

k
LL

−+

+−+=

∑

∑

where g0(n) and g1(n) are respectively the low-
pass and high-pass synthesis filters corresponding
to the mother wavelet. It is observed from
Equation (3) that the jth level coefficients can be
obtained from the (j+1)th level coefficients.
 Daubechies 8-tap wavelet has been chosen for
this implementation. This wavelet type is known
for its excellent special and spectral localities
which are useful properties in image compression
[18]. The filters coefficients corresponding to this
wavelet type are shown in Table 1. H0 and H1 are
the input decomposition filters and G0 and G1
are the output reconstruction filters.

 Table 1.

 Daubechies 8-tap wavelet filter coefficients.
H0 H1 G0 G1

-0.0106 0.2304 -0.2304 -0.0106
 -0.0329 0.7148 0.7148 0.0329
 0.0308 0.6309 -0.6309 0.0308
 0.1870 -0.0280 -0.0280 -0.187
-0.0280 -0.1870 0.1870 -0.0280
-0.6309 0.0308 0.0329 0.6309
 0.7148 0.0329 -0.0329 0.7148
-0.2304 -0.0106 -0.0106 0.2304

3 The Implementation
 In this section, we describe an efficient
implementation of the discrete wavelet transform.
The implementation is based on re-arranging the
QMF discrete wavelet transform multirate
structure, described in [19] and shown in Figure 1,
as a polyphase tree, and then implementing each
sub-filter of the polyphase tree as a distributed
arithmetic filter. This combination of the two
efficient filter structures; polyphase and
distributed arithmetic based structures, leads to an
efficient implementation of the discrete wavelet
transform. In what follows, we first describe the
polyphase reformulation of the analysis and
synthesis filter banks, and then we describe the
distributed arithmetic implementation of the sub-
filter structure of the polyphase filter banks.

X[n]
1H (z)

2H (z)0

2

H (z)1

H (z)0 2

2

H (z)1

H (z)0 2

2

H [n]1

2 G (z)

2 G (z)0

1

Y[n]

0G (z)2

G (z)2 1

2

2

G (z)0

G (z)1

H [n]2

H [n]3

L [n]3

L [n]3

H [n]

H [n]3

2

H [n]1

(a)

(b)

Fig. 1. Mallat's quadratic mirror filter tree (a). forward
DWT tree; (b). inverse DWT tree.

 3

3.1 Polyphase Filter Banks
Filters used in the parallel pyramid tree
architecture of Figure 1, are constructed using
FIR filters because of their inherent stability [20].
A direct form realization of FIR filter is shown in
Figure 2a. A computationally efficient realization
of the filter consists of decomposing the filter into
two sub-filters executing in parallel. This
realization is based on the polyphase
decomposition algorithm [21], and results in a
parallel architecture useful for real time
applications. Consider the transfer function given
in Equation (4). By separating the even numbered
coefficients from the odd numbered ones, we can
rewrite the transfer function as in Equation (5):

∑

−

=

−=
1

0
][)(

N

k

kzkhzH
 (4)

)()(
2

1
12

0)(zEzzEzH −+=
 (5)

where E0 (Z2) and E1 (Z2) are the even sub-
filter and odd sub-filter, respectively. Figure 2b
shows the two-branch parallel realization of the
direct-form FIR shown in Figure2a.

E (z)0
2X[n]

Y[n]

Z -1

E (z)1
2

h[0]
h[1]

Z -1

h[2] h[3] h[4]

-1Z -1 Z Z -1

h[N-1]

Y[n]

-1ZX[n]

(a)

(b)

Fig. 2. (a). direct FIR structure; (b). polyphase realization.

3.1.1 Analysis Filter Bank
The analysis filter bank shown in Figure 3a represents
the basic building block of the forward discrete wavelet
transform. It consists of two decimators connected in
parallel; the upper decimator is a low pass filter
followed by a down sampler, and the lower decimator
is a high pass filter followed by a down sampler. The
down-sampler operates by taking a filtered sequence
x[n] and generating an output sequence y[n] according
to the relation y[n] = x[2n].

All filtered elements in the subsequence
x[2n+1] are discarded. Consequently, the direct
structure shown in Figure 3a is computationally
inefficient since it unnecessarily calculates the
values x[n] for n ≠ 2n, which are discarded by
the down sampler after being calculated. To avoid
such unnecessary calculation, a more efficient, but
equivalent, implementation of the analysis filter
bank exists, and its based on the concept of
polyphase decomposition. If we represent the low
pass transfer function in polyphase form, as
explained earlier, we obtain the final polyphase
structure of the analysis filter bank shown in
Figure 3b. Analysis of the polyphase structure
reveals that we have achieved a significant
computation reduction (roughly a quarter of the
computational complexity) in exchange for a
modest increase in algorithm complexity and
control.

H (z)1

X[n]

H (z)0 2 Y [n]0

2 Y [n]1

E (z)

E (z)X[n]

Z -1

1 Y [n]1

0 0Y [n]

2

2

(a)

(b)

Fig. 3. Polyphase realization of the analysis filter
 bank : (a). direct structure; (b). polyphase structure.

3.1.2 Synthesis Filter Bank
The synthesis filter bank shown in Figure 4a
represents the basic building block of the inverse
discrete wavelet transform. It consists of two
interpolators connected in parallel; the upper is a
low pass filter proceeded by an up-sampler, and
the lower is a high pass filter proceeded by an
up-sampler. The up-sampler inserts an equidistant
zero-valued sample between every two
consecutive samples on the input sequence x[n] .
An output sequence y[n] is developed such that
y[n] = x[n/2] for even indices of n, and 0
otherwise. This makes the sampling rate of the
output sequence y[n] twice as large as the
sampling rate of the original sequence x[n].

 4

We immediately observe a source of inefficiency
in this simple interpolation scheme. One out of
every two samples presented to the filter
represents the actual data sample, and the other
sample is zero. Therefore, its clear computation
power is being wasted in performing arithmetic
operations on zero values. To avoid such
multiply-by-zero arithmetic operations, a more
efficient ,but equivalent, implementation of the
synthesis filter bank exists, and its based on the
concept of polyphase decomposition. If we
expand G0 (z) to its polyphase form as explained
earlier, we obtain the polyphase structure of the
synthesis filter bank shown in Figure 4b. Analysis
of the polyphase structure reveals that we have
achieved a significant computation reduction
(roughly a quarter of the computational
complexity) in exchange for a modest increase in
algorithm complexity and control.

Y[n]X [n]

X [n]1

0 E (z)

E (z)1

0

-1Z

2

2

G (z)X [n]1 1

Y[n]

X [n]0 G (z)02

2

(a)

(b)

Fig. 4. Polyphase realization of the synthesis filter

 bank: (a).direct structure (b). polyphase structure.

3.2 Distributed Arithmetic Sub-Filters
Distributed arithmetic is an efficient method for
computing the inner product operation which
constitutes the core of the discrete wavelet
transform. Mathematical derivation of distributed
arithmetic is extremely simple; a mix of Boolean
and ordinary algebra [22]. Let the variable Y hold
the result of an inner product operation between a
data vector x and a coefficient vector a. The
distributed arithmetic representation the inner
product operation is given as follows:

[]
FF

xaaxY

j
B

j
j

N

i
ii

j
B

j

N

i
iij

−=

−+=

−
−

=

=

−
−

= =

∑

∑∑ ∑

2

)(2
1

1

1
0

1

1 1

 (6)

where the input data words xi have been
represented by the 2’s complement number
presentation in order to bound number growth
under multiplication. The variable xij is the jth bit
of the xi word which is Boolean, B is the number
of bits of each input data word and x0i is the sign
bit. Distributed arithmetic is based on the
observation that the function Fj can only take 2N
different values that can be pre-computed offline
and stored in a look-up table. Bit j of each data xij
is then used to address this look-up table. Equation
(11) clearly shows that the only three different
operations required for calculating the inner
product. First, a look-up to obtain the value of Fj,
then addition or subtraction, and finally a division
by two that can be realized by a shift. FIR filters
and the inner product operation described so far
differ only in how they handle the input data.

Each sub-filter in the polyphase DWT analysis
and synthesis structures, described in the previous
subsection, is implemented as a distributed
arithmetic FIR filter consisting of a look-up table
(LUT) to store all possible partial products over
the FIR filter coefficient of Table 1, a cascade of
shift registers and a scaling accumulator, as shown
in Figure 5a. Input samples are presented to the
input parallel-to serial shift register at the input
signal sample rate. As the input sample is
serialized, the bit-wide output is presented to the
bit-serial shift register cascade,1-bit at a time. The
cascade stores the input sample history in a bit-
serial format and is used in forming the required
inner-product computation. The bit outputs of the
shift register cascade are used as address inputs to
the look-up table. Partial results from the look-up
table are summed by the scaling accumulator to
form a final result at the filter output port.

Since the LUT size in a distributed arithmetic
implementation increases exponentially with the
number of coefficients, the LUT access time can
be a bottleneck for the speed of the whole system
when the LUT size becomes large. Hence we
decomposed the 8-bit LUT shown in Figure 5a

 5

into two 4-bit LUTs, and added their outputs using
a two-input accumulator. The modified
partitioned-LUT architecture is shown in Figure
5b. The total size of storage is now reduced since
the accumulator is less costly than the larger 8-bit
LUT. Furthermore, partitioning the larger LUT
into two smaller LUTs accessed in parallel
reduces access time. In addition, throughput of the
filter is maintained regardless of the length of the
FIR filter. This feature is particularly attractive for
flexible implementations of different wavelet
types since each type has a different set of filer
coefficients.

Fig. 5. Distributed arithmetic realizations of the FIR filter:
 (a). single-LUT realization; (b) efficient partitioned-LUT
 realization.

 4 Functional Simulation

Functional simulation is a major prerequisite step
towards a correct and efficient FPGA
implementation of the discrete wavelet transform.
Therefore, the implementation described in the
previous section, was modeled by the Verilog
hardware description language and verified by its

functional simulator [23]. Simulation waveforms
of the forward and inverse wavelet transforms are
displayed in Figure 6. The waveforms prove that
the implementation execute the operation of the
wavelet transform correctly.

We used uniformly distributed 8-bit random
input samples to generate the simulation
waveforms. We also maintained sufficient
precision of the intermediate and output
coefficients since allocating sufficient bits to the
intermediate and output coefficients is a
necessary step to keep the perfect reconstruction
capabilities of the discrete wavelet transform. If
we allocate fewer bits than necessary, the output
of the inverse discrete wavelet transform will not
be the same as a delayed version of the input of
the forward discrete wavelet transform. Also, if
we’re dealing with an image compression
application, the decompressed image will suffer
form some defects, such as ringing effects and
blurring artifacts.

Simulation waveform of the forward wavelet
transform architecture of Figure 1a is illustrated in
Figure 6a. As an input sample X enters the first
filter bank stage at a rate of 1sample/ clock, one
sample (H1) leaves to the output, and another
sample (L1) leaves to the second stage, both at a
rate of 1sample/ 2 clocks. Similarly, the second
stage sends a sample to the output (H2), and
another sample (L2) to the third stage, both at a
rate of 1sample/ 4 clocks. Finally, the third stage
generates two samples (L3 and H3) at a rate of 1
sample/ 8 clocks.

Simulation waveform of the inverse wavelet
transform architecture of Figure 1b is illustrated in
Figure 6b. The first filter bank stage receives two
inputs (H3 and L3), both produced from the third
stage of the forward DWT at a rate of 1sample/ 8
clocks. The stage up-samples each of them by a
factor of 2, and sends out their filtered summation
at the rate of 1sample/ 4 clocks to the second
stage, to be processed with an input sample
coming from the second stage of the forward
DWT stage at a rate of 1sample/ 4 clocks (H2).
Similarly, the second stage up-samples both by a
factor of 2, and then sends out their filtered
summation at a rate of 1sample/ 2 clocks to the
third stage to be processed with an input sample
coming from the first stage of the forward DWT at
a rate of 1sample/ 2 clocks (H1). Finally, the third

 6

stage up-samples both by a factor of 2, and then
sends out their filtered summation at a rate of
1sample/ clock to the output. This last output
represents the reconstructed signal.

 (a)

 (b)

Fig. 6. Simplified functional Verilog simulation of the
discrete wavelet transform : (a). forward DWT;
(b). inverse DWT.

 5 Discussion
In this section, we present performance results of
the parallel polyphase & DA implementation
described in section three. We also show how the
results exceed considerably those obtained for
other implementations of the transform.

5.1 Experimental Results
We carried out the implementation using a
prototyping board called XSV-300 FPGA Board.
The board is developed by XESS Inc. [24], and is
based on a single XCV300 FPGA chip [25]. This
chip contains 3072 slices (322,970 gates), where
each slice contains 4-input, 1-output LUTs and
two registers. The LUTs allow any function of five
inputs or two functions of four inputs to be
created within a CLB slice. Furthermore, The chip
can operate at a maximum clock speed of 200
MHz. Performance is evaluated with respect to
two metrics; throughput (sample rate) and is given
in terms of the clock speed, and device utilization,
and is given in terms number of logic slices used
by the implementation. Using these two metrics,
the results of the polyphase & DA

Implementation are as follows. The forward
discrete wavelet transform implementation
operated at a throughput of 131.7 MHz, and
required 374 Virtex slices which represents 12 %
of the total slices. Throughout of the inverse
discrete wavelet transform implementation was
119.6 MHz, and the hardware requirement was
461 slices which represents 15 % of the total
Virtex slices.

 5.3 Performance Analysis

In what follows, we study the effects of using the
polyphase decomposition and the distributed
arithmetic techniques, separately. Therefore, we
carried out three different implementations, and
recorded their results in Tables 2 & 3. The first is
a direct implementation is in which all filters in
the DWT tree were implemented using the direct
FIR structure shown in Figure 2a. The second is a
polyphase implementation in which all filters in
the DWT tree were implemented using the
polyphase structure shown in Figures 3b and 4b.
The third is a distributed arithmetic
implementation in which all filters in the DWT
tree were implemented using the distributed
arithmetic FIR structure shown in Figure 5b.

 Referring to Table 2, its noted that the
throughput of the distributed arithmetic
implementation is higher than the throughput of
the direct implementation. This is expected since
the distributed arithmetic implementation replaced
the time-consuming conventional multiply
accumulate operations with fast look-up tables
and shift operations. Furthermore, partial products
of all multiply accumulate operations were pre-
computed offline and stored in the LUTs, thus
saving a great a mount of real-time computation.
As for Virtex slice utilization, Table 3 indicates
that the distributed arithmetic implementation,
uses less hardware resources than the direct
implementation which uses conventional
arithmetic. This is also expected since the
conventional arithmetic multiplier requires more
logic resources than the distributed arithmetic
multiplier which requires small LUTs, simples
adders and shift registers.

It is also noted from the results illustrated in
Table 2, that the throughput of the polyphase
implementation is much higher than the
throughput of the direct implementation. This is

 7

expected since the polyphase implementation
avoids unnecessary decimator and interpolator
computations as explained in section 3.
Furthermore, realizing the different filter banks of
the transform in parallel contributed significantly
to the reduction of the total computation time,
and in turn to the considerable increase in the
sample throughput. As for the hardware resources
requirements of the two implementations, Table 3
indicates that the requirements are comparable,
with the polyphase implementation requiring
slightly more than the direct implementation. This
is due to the fact that parallelizing sequential
structures necessitates using more hardware
resources.

 Table 2.
 Throughput performance comparison.

Implementation Forward
DWT
(MHz)

Inverse
DWT
(MHz)

Direct 14.11 11.6
Distributed Arithmetic 26.0 23.7
Polyphase Decomposition 104.6 98.5
Distributed Arithmetic &
Polyphase Decomposition

131.7 119.6

 Table 3.

 Utilization performance comparison.

Implementation Forward
DWT
(Slice)

Inverse
DWT
(Slice)

Direct 560 (18%) 619 (20%)
Distributed Arithmetic 374 (12%) 461 (15%)
Polyphase Decomposition 651 (21%) 708 (23%)
Distributed Arithmetic &
Polyphase Decomposition

830 (27%)

922 (30%)

Finally, the wavelet transform was implemented on the
TMS320C6711; a Texas Instrument digital signal
processing board with a complex architecture suitable
for image processing applications [26]. The board can
operate at 150 MHz, with a peak performance of 900
MFLOPS [27]. It is noted from the results illustrated
in Figure 7, that all the FPGA implementations
perform much better than the TMS20C6711 software
implementations The superior performance of the
FPGA-based implementations is attributed to the
highly parallel, pipelined and distributed architecture

of Xilix Virtex FPGA. Moreover, it should be noted
that the Virtex FPGAs offer more than high speed for
many embedded applications. They offer compact
implementation, low cost and low power consumption;
things which can’t be offered by any software
implementation.

0

20

40

60

80

100

120

140

Th
ro

ug
pu

t (
M

H
z)

TMS320C6711
DSP

Direct DA Polyphase Polyphase &
DA

Implementation

Forward DWT Inverse DWT

Fig. 7. Throughput comparison between different DWT
 implementations.

 6 Concluding Remarks

In this paper, FPGA implementations of the

discrete wavelet transform and its inverse were
simulated and realized in a reconfigurable
computing hardware board based on the advanced
Xilinx Virtex FPGAs. According to the results
obtained for the various implementations, we
observed that the implementation which was based
on the distributed arithmetic and ployphase
decomposition techniques achieved the best
performance results. We also observed that the
performance of the TMS320C6711 digital signal
processor was much lower the performance of the
least efficient, direct FPGA implementation. One
final remark is that the implementation is
applicable to image-based applications where the
image data is two dimensional. The 2-D
transformation is straightforward, and can be
easily achieved by inserting a matrix transpose
module between two 1-D discrete wavelet
transform modules. The 1-D discrete wavelet
transform is first performed on each row of the 2-
D image data matrix. This is followed by a matrix
transposition operation. Next, the discrete wavelet
transform is executed on each column of the
matrix.

 8

References

[1] C. Burrus, R. Gopinath and H. Guo, Introduction

to Wavelets and Wavelet Transforms. New Jersey:
Prentice Hall, 1998.

[2] O. Riol and M. Vetterli, “ Wavelets and signal
processing,” IEEE Signal Processing Magazine,
vol. 8, no. 4, pp. 14-38, October 1991.

[3] G. Beylkin, R. Coifman and V. Rokhlin, Wavelets
in Numerical Analysis in Wavelets and Their
Applications. New York: Jones and Bartlett, 1992,
pp. 181-210.

[4] T. Ebrahimi and F. Pereira, The MPEG-4 Book.
Prentice Hall, July 2002

[5] M. Smith, Application-Specific Integrated
Circuits. USA: Addison Wesley Longman, 1997.

[6] C.Chakabarti, M. Vishwanath, and R. Owens,
"Architectures for Wavelet Transforms: A
Survey," Journal of VLSI Signal Processing, vol.
14, no. 2, Nov. 1996, pp.171-192.

[7] G. Knowles, “VLSI architecture for the discrete
wavelet transform,” Electron Letters, vol. 26, no.
15, July 1990, pp. 1184-1185.

[8] K. Parhi and T. Nishitani, VLSI architectures for
discrete wavelet transforms, IEEE Trans. VLSI
Systems,June 1993, pp. 191-202.

[9] C.Chakabarti and M. Vishwanath, “Efficient
realizations of the discrete and continuous wavelet
transforms: from single chip implementations to
mappings on SIMD array computers ,” IEEE
Trans. Signal Processing, vol. 43, no. 3, Mar.
1995, pp. 759-771.

[10] R. Seals and G. Whapshott, Programmable
Logic: PLDs and FPGAs. UK: Macmillan, 1997.

[11] P. Kollig, B. Al-Hashimi and K. Abbot, “ FPGA
implementation of high performance FIR filters,”
In Proc. International Symposium on Circuits and
Systems, 1997.

[12] M. Shand, “ Flexible image acquisition using
reconfigurable hardware,” In Proc. of the IEEE
Workshop on Filed Programmable Custom
Computing Machines, Napa, Ca, Apr. 1995.

[13] J. Villasenor, B. Schoner, and C. Jones, “Video
communication using rapidly reconfigurable
hardware,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 5, no. 12, Dec.
1995, pp. 565-567.

[14] Xilinx Corporation. “Xilinx breaks one million-
gate barrier with delivery of new Virtex series,”
October 1998.

[15] S. White, “ Applications of Distributed
Arithmetic to Digital Signal Processing: A
Tutorial”, In IEEE ASSP Magazine, July 1989,
pp. 4-19.

[16] M. Bellanger, G. Bonnerot and M. Coudreuse,
“Digital Filtering By Polyphase Network:
Application to Sample Rate Alteration and Filter
Banks,” IEEE Acoustic Speech Signal Proc.,
vol.24, April 1976, pp.109-114.

[17] S. Mallat, “ A theory for multresolution signal
decomposition: The wavelet representation, IEEE
Trans. Pattern Anal. And Machine Intell., vol. 11,
no. 7, July 1989, pp. 674-693.

[18] I. Daubechies, “Orthonomal bases of compactly
supported wavelets,” Comm. Pure Appl. Math,
vol. 41, 1988, pp. 906-966.

[19] G. Strang and T. Nguyen, Wavelets and Filter
Banks. MA: Wellesley-Cambridge Press, 1996.

[20] A. Oppenheim and R. Schafer, Discrete Signal
Processing. New Jersy: Prentice Hall, 1999.

[21] P. Vaidyanathan, Multirate Systems and Filter
Banks. New Jersey: Prentice Hall, 1993.

[22] L. Mintzer, “The Role of Distributed Arithmetic
in FPGAs,” Xilinx Corporation.

[23] J. Bhasker, A Verilog HDL Primer. PA: Star
Galaxy Publishing, 1997.

[24] Xess Corporation. www.xess.com.2002.
[25] Xilinx Corporation. Virtex Data Sheet, 2000.
[26] N. Kehtarnavaz and M. Keramat, DSP System

Design Using the TMS320C6000. New Jersey:
Prentice Hall, 2001

[27] Texas Instruments Corporation. TMS320C6711
Data Sheet, 2000.

http://www.xess.com/

	3.1 Polyphase Filter Banks

