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Abstract �ASIC hardware implementations of the discrete wavelet transform are required to cope with 
the intensive real-time computations of the transform. In this paper, we describe a parallel 
implementation of  the wavelet transform using one type of reconfigurable ASICs;  Filed Programmable 
Gate Arrays (FPGAs). The implementation is based on reformulating the transform using the distributed  
arithmetic and ployphase decomposition techniques, so that  the ample inherent parallelism of the 
transform can be well exploited by the fine-grained parallel architecture of  Virtex FPGAs. Performance 
results demonstrate the applicability of  FPGAs with distributed  arithmetic and polyphase 
decomposition   to achieve the required high computational speeds of the discrete wavelet transform.  
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1   Introduction 
The discrete wavelet transform is a powerful new 
mathematical method with a broad spectrum of 
potential applications [1]. It has already been used 
successfully in   signal  processing [2] and  
numerical analysis [3],  among many other audio-
visual applications. In particular, the area of data 
compression has benefited incredibly from  the 
wavelet transform [4]. However, the transform 's 
high  computational requirements may limit its 
wide-spread,  especially in applications requiring 
real time performance. Consequently, there has 
been a great demand on high-speed computing 
devices to meet the real-time computational 
requirements of the transform.  

   Fortunately, the  discrete wavelet transform  is 
inherently parallel, and it lends itself to hardware 
implementations on VLSI devices [5]. Indeed, 
many VLSI implementations of the transform have 
appeared in literature [6-9], however, most of the 
proposed architectures require  complex control 
units,  and are not easily scaled up for different 
wavelets filters  and different octave levels. 

Recently, Filed programmable gate arrays 
(FPGAs) have become an attractive 
implementation platform for  many digital signal 
processing algorithms [10-13]. FPGAs are 
programmable ASICs, offer intermediate 
capabilities between those offered by  custom 
VLSI  ASICs and digital signal processors.  
Indeed, programmability of FPGAs makes them a 
perfect choice for implementing the discrete 
wavelet transform since  this would allow  easy 
modification of different wavelet types. 

    In this paper, we describe a parallel  FPGA 
implementation of  the discrete wavelet transform 
using  Virtex FPGAs [14]. The implementation is 
based on achieving high execution speeds by 
exploiting the abundant inherent parallelism of the  
transform using the distributed arithmetic [15] and 
plolyphse decomposition [16]. Section  2 reviews 
the Mallat's pyramid algorithm. The 
implementation is described in section 3, and 
simulated in section 4. Results  are presented  in 
section 5 and conclusions in  section 6. 
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    2   Mallat’s Pyramid  Algorithm 
Wavelets are special functions which, in a form 
analogous to sines and cosines in Fourier analysis, 
are used as basal functions for representing 
signals. The coefficients of the discrete wavelet 
transform can be calculated recursively and in a 
straight forward manner using the well-known 
Mallat’s pyramid  algorithm [17]. Based on 
Mallat’s algorithm, the discrete wavelet 
coefficients of any stage can be computed from the  
coefficients of  the previous stage using the 
following iterative equations:   
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Where WL(n,j) is the nth scaling coefficient at the 
jth stage,  WH(n,j) is the nth wavelet coefficient at 
the jth stage, and h0(n)  and  h1(n) are the dilation 
coefficients corresponding to the scaling and 
wavelet functions, respectively.  In order to 
reconstruct the original data, the DWT coefficients 
are upsampled and passed through another set of 
low pass and high pass filters, which is expressed 
as 
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where  g0(n)  and  g1(n) are respectively the low-
pass and high-pass synthesis filters corresponding 
to the mother wavelet. It is observed from  
Equation (3) that the jth level coefficients can be 
obtained from the (j+1)th level coefficients.  
   Daubechies 8-tap  wavelet   has been chosen for 
this implementation. This wavelet type is known 
for its  excellent special and spectral localities 
which are useful  properties  in image compression 
[18]. The filters coefficients  corresponding to this 
wavelet type  are shown  in Table 1. H0 and H1 are 
the input decomposition  filters and  G0 and G1   
are the output reconstruction filters. 
 

   
                                 Table 1. 

           Daubechies 8-tap  wavelet  filter coefficients. 
H0 H1 G0 G1 

-0.0106 0.2304 -0.2304 -0.0106 
 -0.0329 0.7148 0.7148 0.0329 
 0.0308 0.6309 -0.6309 0.0308 
 0.1870 -0.0280 -0.0280 -0.187 
-0.0280 -0.1870 0.1870 -0.0280 
-0.6309 0.0308 0.0329 0.6309 
 0.7148 0.0329 -0.0329 0.7148 
-0.2304 -0.0106 -0.0106 0.2304 

 
3   The Implementation 
 In this section, we describe an efficient 
implementation of the discrete wavelet transform. 
The implementation is based on re-arranging the 
QMF discrete wavelet transform  multirate 
structure, described in [19] and shown in Figure 1, 
as a polyphase tree, and then implementing each 
sub-filter of the polyphase tree as a distributed  
arithmetic filter. This combination of the two 
efficient filter structures; polyphase and 
distributed arithmetic based structures,  leads to an 
efficient implementation of the discrete wavelet 
transform. In what follows, we  first describe the 
polyphase reformulation of the analysis and 
synthesis filter banks, and then we describe the 
distributed  arithmetic implementation of  the sub-
filter structure of the polyphase filter banks.  
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Fig. 1. Mallat's quadratic mirror filter tree (a). forward 
DWT tree;  (b). inverse  DWT tree.  
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3.1 Polyphase Filter Banks 
Filters used in the parallel pyramid tree 
architecture of  Figure 1,  are  constructed using  
FIR filters because of their  inherent stability [20].  
A direct form realization of FIR filter is shown in 
Figure 2a. A computationally efficient realization  
of the filter  consists of decomposing the filter into 
two sub-filters executing in parallel. This  
realization is based on the polyphase 
decomposition algorithm [21], and results in a 
parallel architecture  useful for real time 
applications.  Consider  the transfer function given 
in Equation (4).  By separating the even numbered 
coefficients from the odd numbered ones, we can 
rewrite the transfer function as in Equation (5):  
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where  E0 ( Z2 ) and   E1 ( Z2 ) are the even sub-
filter and  odd sub-filter, respectively. Figure 2b 
shows the two-branch parallel realization of the 
direct-form  FIR shown in Figure2a.   
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Fig. 2.  (a). direct FIR structure; (b).  polyphase realization. 

 
 
3.1.1 Analysis Filter Bank 
The analysis filter bank shown in Figure 3a represents 
the basic building block of the forward discrete wavelet 
transform. It consists of  two decimators connected in 
parallel; the upper decimator is a low pass filter 
followed by a down sampler, and the lower decimator 
is a high pass filter followed by a down sampler. The 
down-sampler operates by  taking a filtered sequence 
x[n] and generating an output sequence y[n] according 
to the relation y[n] = x[2n].  

All  filtered elements in the subsequence   
x[2n+1] are discarded.   Consequently, the  direct 
structure shown in Figure 3a is  computationally 
inefficient since it unnecessarily calculates  the 
values x[n]  for  n ≠ 2n, which are discarded by 
the down sampler after being calculated. To avoid 
such unnecessary calculation, a more efficient, but 
equivalent, implementation of the analysis filter 
bank exists,  and its based on the concept of 
polyphase decomposition.  If we represent the low 
pass transfer function in  polyphase form, as 
explained earlier, we obtain  the final polyphase  
structure of the analysis filter bank shown in  
Figure 3b. Analysis of the polyphase structure 
reveals that we have achieved a significant 
computation reduction (roughly a quarter of the 
computational complexity) in exchange for a 
modest increase in algorithm complexity and 
control. 
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Fig. 3. Polyphase realization of  the  analysis filter    
         bank : (a). direct  structure;  (b). polyphase structure.  

 
 
3.1.2 Synthesis Filter Bank 
The synthesis filter bank shown in Figure 4a  
represents the basic building block of the inverse 
discrete wavelet transform. It consists of  two 
interpolators connected in parallel; the upper is a 
low pass filter proceeded by an up-sampler, and 
the lower is a high pass filter proceeded by  an  
up-sampler.  The up-sampler inserts an equidistant 
zero-valued sample  between every two 
consecutive samples on the input sequence x[n] . 
An output sequence y[n] is developed such that  
y[n] =   x[n/2]  for even indices of n, and 0  
otherwise. This makes the  sampling rate of  the 
output sequence  y[n]  twice as large as the 
sampling rate of the original sequence  x[n].  
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We immediately observe a source of inefficiency 
in this simple interpolation scheme. One out of 
every two samples presented to the filter 
represents the actual data sample, and  the other 
sample is zero. Therefore,  its clear  computation 
power is being wasted in  performing arithmetic 
operations on  zero  values. To avoid such 
multiply-by-zero arithmetic operations, a more 
efficient ,but equivalent, implementation of the 
synthesis  filter bank exists,  and its based on the 
concept of polyphase decomposition. If  we 
expand G0 (z) to its polyphase form as explained 
earlier, we obtain  the polyphase  structure of the 
synthesis filter bank shown in  Figure 4b. Analysis 
of the polyphase structure reveals that we have 
achieved a significant computation reduction 
(roughly a quarter of the computational 
complexity ) in exchange for a modest increase in 
algorithm complexity and control. 
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Fig. 4. Polyphase realization of  the synthesis filter 

   bank: (a).direct structure  (b). polyphase structure.  
 
 

 
3.2 Distributed Arithmetic Sub-Filters 
Distributed arithmetic  is an efficient method for 
computing the inner product operation  which 
constitutes the core of  the discrete wavelet 
transform. Mathematical derivation  of distributed 
arithmetic is extremely simple; a mix of Boolean 
and ordinary algebra [22]. Let the variable Y hold 
the result of an inner product operation between a 
data vector x and a coefficient vector a. The 
distributed arithmetic  representation the inner 
product operation is given as follows:   
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where  the  input data words xi have been 
represented by the 2’s complement number 
presentation in order to bound number growth 
under multiplication. The variable   xij  is the jth bit 
of the xi word which is Boolean, B is the number 
of bits of each input data word and x0i  is the sign 
bit.  Distributed arithmetic is based on the 
observation that the function Fj can only take 2N 
different values that can be pre-computed offline 
and stored in a look-up table. Bit  j of each data xij  
is then used to address this look-up table. Equation 
(11) clearly shows that the only three different 
operations required for calculating the inner 
product. First, a look-up to obtain the value of Fj, 
then addition or subtraction, and finally a division 
by two that can be realized by a shift. FIR filters 
and the inner product operation described so far 
differ only in how they handle the input data.  

Each sub-filter in the polyphase DWT analysis 
and synthesis structures, described in the previous 
subsection, is implemented as a distributed 
arithmetic FIR filter consisting of  a look-up table 
(LUT) to store all possible partial products  over 
the FIR filter coefficient of Table 1, a cascade of 
shift registers and a scaling accumulator, as shown 
in Figure 5a.  Input samples are presented to the 
input parallel-to serial shift register at the input 
signal sample rate. As the input sample is 
serialized, the bit-wide output is presented to the 
bit-serial shift register cascade,1-bit at a time. The 
cascade stores the input sample history in a bit-
serial format and is used in forming the required 
inner-product computation. The bit outputs of the 
shift register cascade  are used as address inputs to 
the look-up table. Partial results from  the look-up 
table are summed by the scaling accumulator to 
form a final result at the filter output port. 

Since the LUT size in a distributed arithmetic 
implementation increases exponentially with the 
number of coefficients, the LUT access time can 
be a bottleneck for the speed of the whole system 
when the LUT size becomes large.  Hence we 
decomposed the 8-bit LUT shown in Figure 5a  
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into two 4-bit LUTs, and added their outputs using 
a two-input accumulator. The modified 
partitioned-LUT architecture is shown in Figure 
5b.  The total size of storage is now reduced since 
the accumulator is less costly than the larger 8-bit 
LUT. Furthermore, partitioning the larger LUT 
into two smaller  LUTs accessed in parallel 
reduces access time. In addition, throughput of the 
filter is maintained regardless of the length of the 
FIR filter. This feature is particularly attractive for 
flexible implementations of different wavelet 
types since each type has a different set of filer 
coefficients.  

 

 
 

Fig. 5.  Distributed  arithmetic realizations of the FIR filter: 
 (a). single-LUT realization; (b) efficient partitioned-LUT 
 realization.  
 
   4  Functional Simulation   

Functional simulation is a major prerequisite  step  
towards a correct and efficient  FPGA  
implementation of the  discrete wavelet transform.   
Therefore, the implementation described in the  
previous section,  was  modeled  by the  Verilog 
hardware description language  and verified by its 

functional simulator [23]. Simulation waveforms 
of the forward and inverse wavelet transforms are 
displayed in Figure 6. The waveforms prove that 
the  implementation  execute the operation of the 
wavelet transform correctly. 

We used uniformly distributed 8-bit random 
input samples to generate the simulation 
waveforms. We also maintained sufficient  
precision of the intermediate and output  
coefficients since allocating sufficient bits to the 
intermediate and output coefficients is a  
necessary  step to keep the perfect reconstruction 
capabilities of the discrete wavelet transform. If 
we allocate fewer bits than necessary, the  output 
of the inverse discrete wavelet transform will not 
be  the same as a delayed version of the input of 
the forward discrete wavelet transform. Also, if 
we’re dealing with an image compression 
application,  the decompressed  image will suffer 
form some defects, such as ringing effects and 
blurring artifacts. 

Simulation waveform of the forward wavelet 
transform architecture of Figure 1a is illustrated in 
Figure 6a. As an input sample X  enters the first 
filter bank stage at a rate of 1sample/ clock, one 
sample (H1) leaves to the output,  and another  
sample (L1)  leaves to the second stage, both at a 
rate of 1sample/ 2 clocks. Similarly, the second 
stage sends a sample to the output (H2), and 
another  sample (L2) to the third stage, both at a 
rate of 1sample/ 4 clocks. Finally, the third stage 
generates two samples  (L3 and  H3) at a rate of  1 
sample/ 8 clocks. 

Simulation waveform of the inverse wavelet 
transform architecture of Figure 1b is illustrated in 
Figure 6b. The first filter bank stage receives two 
inputs (H3 and L3), both produced from the third 
stage of the forward DWT at a rate of 1sample/ 8 
clocks. The stage up-samples each of them by a 
factor of 2, and sends out their filtered summation 
at the rate of 1sample/ 4 clocks to the second 
stage, to be processed with an input sample 
coming from the second stage of the forward 
DWT stage at a rate of 1sample/ 4 clocks (H2). 
Similarly, the second stage up-samples both by a 
factor of 2, and then sends out their filtered 
summation at a rate of 1sample/ 2 clocks to the 
third stage to be processed with an input sample 
coming from the first stage of the forward DWT at 
a rate of 1sample/  2 clocks (H1). Finally, the third 
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stage up-samples both by a factor of 2,  and then  
sends out their filtered summation at a rate of 
1sample/ clock to  the output. This last output 
represents the reconstructed signal.  

 
 

 
                     (a) 

              (b) 
 

Fig. 6.  Simplified functional Verilog simulation of the 
discrete wavelet   transform : (a). forward DWT;   
(b). inverse DWT.  

 
 

   5  Discussion       
In this section, we present  performance results of  
the  parallel polyphase & DA implementation 
described in section three. We  also show how the 
results exceed considerably those obtained for 
other implementations of the transform.  

 
5.1 Experimental Results   
We carried out the implementation using a 
prototyping board called  XSV-300  FPGA Board. 
The board is  developed by XESS Inc. [24],  and is 
based on a single XCV300 FPGA chip [25]. This 
chip  contains 3072 slices (322,970 gates), where 
each slice contains 4-input, 1-output LUTs and 
two registers. The LUTs allow any function of five 
inputs or two functions of four inputs  to be 
created within a CLB slice. Furthermore, The chip 
can operate at a maximum clock speed of 200 
MHz. Performance is  evaluated  with respect to 
two metrics; throughput (sample rate)  and is given 
in terms of  the clock speed, and device utilization, 
and is given in terms number of  logic slices used 
by the implementation. Using these two metrics, 
the results of the polyphase &  DA   

Implementation are as follows. The  forward 
discrete wavelet transform implementation 
operated at a throughput of  131.7 MHz, and 
required  374 Virtex slices which represents 12 % 
of the total  slices. Throughout of the inverse 
discrete wavelet transform  implementation was 
119.6 MHz, and the hardware requirement was 
461 slices which represents 15 % of the total 
Virtex  slices.  

 
    5.3 Performance Analysis 

In what follows, we study the effects of using the 
polyphase decomposition and the   distributed 
arithmetic techniques, separately. Therefore, we 
carried out three different  implementations, and 
recorded their results in Tables 2 & 3.  The first is 
a direct implementation is in  which all filters in 
the DWT tree were  implemented using the direct 
FIR structure shown in Figure 2a. The second is a 
polyphase  implementation in which all filters in 
the DWT tree were  implemented using the 
polyphase structure  shown in Figures 3b and 4b. 
The third is a distributed arithmetic  
implementation  in which all filters in the DWT 
tree were  implemented using the distributed 
arithmetic  FIR structure shown in Figure 5b. 

 Referring to Table 2, its noted that the 
throughput of the distributed arithmetic  
implementation is higher  than the throughput of 
the direct  implementation. This is expected since 
the distributed arithmetic implementation replaced 
the time-consuming conventional multiply 
accumulate operations with fast look-up tables  
and shift operations. Furthermore, partial products 
of all multiply accumulate operations were pre-
computed offline and stored in the LUTs, thus 
saving a great a mount of real-time computation.  
As for Virtex slice utilization, Table 3 indicates 
that the distributed arithmetic implementation, 
uses less hardware resources than the  direct 
implementation which uses conventional 
arithmetic. This is also expected since the 
conventional  arithmetic multiplier requires more 
logic resources than the distributed arithmetic 
multiplier which requires small  LUTs, simples 
adders and shift registers. 

It is also  noted from the results  illustrated in 
Table 2, that  the throughput of the polyphase  
implementation is much higher  than the 
throughput of the direct implementation. This is 
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expected since the polyphase implementation 
avoids unnecessary decimator and interpolator  
computations as explained in section 3. 
Furthermore, realizing the different filter banks of 
the transform in parallel  contributed significantly 
to the reduction  of  the total computation time, 
and in turn to the considerable increase in the 
sample throughput.  As for the hardware resources 
requirements of the two  implementations, Table 3 
indicates that the requirements are comparable, 
with the polyphase implementation requiring 
slightly more than the direct implementation. This 
is due to the fact that parallelizing sequential 
structures necessitates using more hardware 
resources.  

 
                        Table 2.  
        Throughput performance comparison. 

Implementation Forward 
DWT 
(MHz) 

Inverse  
DWT 
(MHz) 

Direct 14.11 11.6 
Distributed Arithmetic 26.0 23.7   
Polyphase Decomposition 104.6 98.5 
Distributed Arithmetic & 
Polyphase Decomposition 

131.7 119.6 

 
 Table 3.  

     Utilization performance comparison. 

Implementation Forward 
DWT 
(Slice) 

Inverse  
DWT 
(Slice) 

Direct 560  (18%)  619  (20%) 
Distributed Arithmetic 374 (12%) 461  (15%) 
Polyphase Decomposition 651  (21%) 708 (23%) 
Distributed Arithmetic & 
Polyphase Decomposition 

 
830  (27%) 

 
922  (30%) 

 
Finally, the wavelet transform was implemented on the 
TMS320C6711; a Texas Instrument  digital signal 
processing board with a complex architecture suitable 
for  image processing  applications [26]. The board can 
operate at 150 MHz,  with  a peak performance of 900 
MFLOPS [27].  It is noted from the results  illustrated 
in Figure 7, that all the  FPGA implementations  
perform much better than the TMS20C6711 software 
implementations  The superior performance of the 
FPGA-based  implementations is attributed to the 
highly parallel, pipelined  and distributed architecture 

of Xilix Virtex FPGA. Moreover, it should be noted 
that the Virtex FPGAs offer more than high speed for 
many embedded applications. They offer compact 
implementation, low cost and low power consumption; 
things which can’t be offered by any software 
implementation. 
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Fig. 7. Throughput comparison between different DWT 
 implementations. 

 
 
 
 

   6  Concluding Remarks 
 
In this paper,  FPGA implementations of the 

discrete wavelet transform and its inverse were 
simulated and  realized  in a reconfigurable 
computing hardware board based on the advanced 
Xilinx Virtex FPGAs. According to  the results 
obtained for the various implementations, we 
observed that the implementation which was based 
on the distributed arithmetic and ployphase 
decomposition techniques achieved the best 
performance results. We also observed that the 
performance of the  TMS320C6711 digital signal 
processor was much lower the performance of the 
least efficient, direct FPGA implementation. One 
final remark is that the implementation is  
applicable to image-based applications where the 
image data is two dimensional. The 2-D 
transformation  is straightforward, and can be 
easily achieved  by inserting a matrix transpose 
module between two 1-D discrete wavelet 
transform  modules. The 1-D discrete wavelet 
transform  is first performed on each row of the 2-
D image data matrix. This is followed by a matrix 
transposition operation. Next, the discrete wavelet 
transform is executed on each column of the 
matrix.  
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