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Abstract

To make calculation with fuzzy numbers more efficient and similar to the real (crisp) number
calculus, the concept of the membership function of a fuzzy set, introduced by L. Zadeh
in 1965, is weakened by requiring a mere membership relation. In this way a generalized
concept of a fuzzy number appears as an ordered pair of continuous real functions defined
on the interval [0, 1]. In this way the graph of the membership relation is equipped with its
orientation. Moreover, to a given ordered fuzzy number two kinds of opposite elements are
defined: the classical opposite element obtained from the number by its multiplication with
a negative crisp one, and the complementary element which differs from the opposite one by
the orientation. Four algebraic operations between such fuzzy numbers are constructed in a
way that renders them an algebra. Further, a normed topology is introduced which makes
them a Banach space, and even more, a Banach algebra with unity. In the particular case
the operations on the so-called convex fuzzy numbers can be recovered.

Keywords: fuzzy number, fuzzy membership relation, algebraic operations, normed space, algebra

1 Introduction

The commonly accepted model of calculations
on fuzzy numbers is that set up by Duboisia
and Prade [3], who proposed a restricted class
of membership functions, called (L,R)–numbers.
The essence of their representation is that the
membership function is of a particular form
that is generated by two so-called shape func-
tions: L and R. If functions L and R are lin-
ear, the membership functions of fuzzy num-
bers become triangular. However, approxi-
mations of fuzzy functions and operations are
needed, if one wants to stay within this rep-
resentation while following the Zadeh’s exten-
sion principle [2]. It leads to some drawbacks
concerned with the properties of fuzzy alge-
braic operations, as well as to unexpected and
uncontrollable results of repeatedly applied
operations, caused by the need of intermedi-
ate approximations [12].

One of the goals of our paper is to construct
a revised concept of a fuzzy number, and at
the same time to have the algebra of crisp
(non-fuzzy) numbers inside the concept. The
other goal is to preserve as much of the prop-
erties of the classical so-called crisp reals R
as possible, in order to facilitate real world
applications as e.g. in fuzzy control systems.
The new concept makes possible utilizing the
fuzzy arithmetic and constructing an algebra
of fuzzy numbers. By doing this, the new
model of fuzzy numbers has obtained an extra
feature, which was not present in the previous
ones: neither in the classical Zadeh’s model,
nor in the more recent model of so-called con-
vex fuzzy numbers. This feature, called in
[17, 18, 20] the orientation, requires a new in-
terpretation as well as a special care in dealing
with ordered fuzzy numbers. To avoid confu-
sion at this stage of development, let us stress
that any fuzzy number, classical (crisp or con-
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vex fuzzy) or ordered (new type), has its op-
posite number, which is obtained from the
given number by multiplication with minus
one. For the new type of fuzzy numbers, mul-
tiplication by a negative real not only affects
the support, but also the orientation swaps.
Important is that to a given ordered fuzzy
number two kinds of opposite elements are
defined: the classical, one can say an alge-
braic opposite number(element) obtained by
its multiplication with a negative crisp one,
and the complementary number which differs
from the opposite one by the orientation. Re-
lating to an ordered fuzzy number its oppo-
site and complementary elements makes the
calculation more complex, however with new
features. From one side a sum of an ordered
fuzzy number and its algebraic opposite gives
a crisp zero, like in the standard algebra of
real number. From another side the com-
plementary number can play the role of the
opposite number in the sense of the Zadeh’s
model, since the sum of the both – the (or-
dered fuzzy) number and its complementary
one – gives a fuzzy zero, non-crisp, in general.
We have to admit that the applicability of
the new type of fuzzy numbers is restricted to
such real-life situations, where also the mod-
elled circumstances provide information about
orientation. In particular, in most existing
approaches, for a fuzzy number a the differ-
ence a − a gives a fuzzy zero. However, this
leads to unbounded growth of the support of
fuzziness if a sequence arithmetic operations
is performed between two (classical) fuzzy num-
ber. To overcome this unpleasant circum-
stance the concept of the orientation of a fuzzy
number has been introduced as well as simple
operations between those new objects, called
here ordered fuzzy numbers, which are rep-
resented by pairs of continuous functions de-
fined on the unit interval[0,1]. Those pairs are
the counterparts of the inverses of the increas-
ing and decreasing parts of convex fuzzy num-
bers. In particular case, for the pairs (f, g)
where f, g ∈ C0([0, 1]) which satisfy:
1)f ≤ g and 2)f and g are invertible, with
f increasing and g decreasing, one can re-
cover the class of fuzzy numbers called convex
ones [4, 11]. Then as long as multiplication

by negative numbers are not performed classi-
cal fuzzy calculus is equivalent to the present
operations defined for ordered fuzzy numbers
(with negative orientation).
Doing the present development, we would like
to refer to one of the very first representations
of a fuzzy set defined on a universe X (the
real axis R, say) of discourse. In that repre-
sentation (cf. [1, 5]) a fuzzy set (read here: a
fuzzy number) A is defined as a set of ordered
pairs {(x, µx)}, where x ∈ X and µx ∈ [0, 1]
has been called the grade (or level) of mem-
bership of x in A. At that stage, no other
assumptions concerning µx have been made.
Later on, one assumed that µx is (or must be)
a function of x. However, originally, A was
just a relation in a product space X × [0, 1].

2 Attempts

A number of attempts to introduce non-stan-
dard operations on fuzzy numbers have been
made [8, 7, 10, 11, 12]. It was noticed that in
order to construct operations more suitable
for their algorithmisation a kind of invertibil-
ity of their membership functions is required.
In [4, 15, 13, 6] the idea of modelling fuzzy
numbers by means of convex or quasi-convex
functions (cf. [14]) is discussed. We con-
tinue this work by defining quasi-convex func-
tions related to fuzzy numbers in a more gen-
eral fashion, enabling modelling both dynam-
ics of changes of fuzzy membership levels and
the domain of fuzzy real itself. Even starting
from the most popular trapezoidal member-
ship functions, algebraic operations can lead
outside this family, towards such generalized
quasi-convex functions.
That more general definition enables to cope
with several drawbacks. Moreover, it seems
to provide a solution for other problems, like,
e.g., the problem of defining total ordering
over fuzzy numbers (cf. [18]). Here we should
mention that Klir was the first, who in [10]
has revised fuzzy arithmetic to take relevant
requisite constraint (the equality constraint,
exactly) into account and obtained A−A = 0
as well as the existence of inverse fuzzy num-
bers for the arithmetic operations. Some par-
tial results of the similar importance were ob-
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tained by Stanch in [7] by introducing an ex-
tended operation of a very complex structure.
Our approach, however, is much simpler from
mathematical point of view, since it does not
use the extension principle but refers to the
functional representation of fuzzy numbers in
a more direct way.
In the classical approach the extension princi-
ple which gives a formal apparatus to carry
over operations (e.g. arithmetic or algebraic)
from sets to fuzzy sets. Then in the case of
the so-called convex fuzzy numbers (cf. [11]
the arithmetic operations are algorithmically
with the help of the so-called α-sections of
membership functions. The local invertibil-
ity of quasi-concave membership functions, on
the other hand, enables to define operations
in terms of the inverses of the corresponding
monotonic parts, as was pointed out in our
previous papers [15, 16, 17, 18]. In our last
paper [20] we went further and have defined
a more general class of fuzzy number, called
ordered fuzzy number, just as a pair of contin-
uous functions defined on the interval [0, 1].
Those pairs are counterparts of the mentioned
inverses.

3 Ordered fuzzy numbers

Here the concept of membership functions is
weakened by requiring a mere a particular
type of a membership relation or multifunc-
tion.
Definition By an ordered fuzzy number a ∈
R we mean an ordered pair of functions

a = (f, g) (1)

where elements of the pair are continuous func-
tions f, g : [0, 1] → R. We call the corre-
sponding elements: f – an up-part of a and
then denote by aup, and g – the down-part
of the fuzzy number a then denote by adown.
It was pointed out in [17], to make the set
of ordered fuzzy numbers closed under arith-
metic operations, the assumption the up-branch
comes before the down-branch (which is the
case of convex fuzzy numbers),has to be drop-
ped. Graphically the curves (f, g) and (g, f)
do not differ, if drawn on the coordinate sys-

tem in which x-axis proceeds y axis. How-
ever, the corresponding curves determine two
different ordered fuzzy numbers: they differ
by the orientation: if the first curve has the
positive orientation, then the second one has
negative. It will be seen in the figure below.
According to the definition introduced in our
previous papers (cf. [20] and [19] we perform
arithmetic operations componentwise. In the
present notation they will be

(a + b)up = aup + bup (2)
(a + b)down = adown + bdown

(a− b)up = aup − bup

(a− b)down = adown − bdown

(a · b)up = aup · bup (3)
(a · b)down = adown · bdown

(a/b)up = aup/bup

(a/b)down = adown/bdown

where the division is only defined when 0 does
not belong to the values of bup and bdown. In
the particular case when a subset of those
numbers for which the up-branch comes be-
fore the down-branch the operations on the
so-called convex fuzzy numbers can be recov-
ered.

4 Normed space of fuzzy num-
bers

Let us notice that all operations defined are
suitable for pairs of functions. The pointwise
multiplication has a neutral element – the pair
of two constant functions equal to one.
Linear structure of R is obvious: the set of
all pairs of continuous functions R is isomor-
phic to the linear space of real 2D vector-
valued functions defined on the unit interval
I = [0, 1].
Normed structure of R is introduced by the
norm:

||a|| = max(sup
s∈I

|aup(s)|, sup
s∈I

|adown(s)|).

Hence R can be identified with C([0, 1]) ×
C([0, 1]).
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The spaceR is an Abelian group and topolog-
ically a Banach space, and moreover, a Ba-
nach algebra with the unity (1, 1) - a pair
of constant functions equal to one. Possess-
ing the space R equal to C0([0, 1])×C0([0, 1])
gives us the chance to define a large set of
defuzzyfication procedures of ordered fuzzy
numbers [21] due to the general representa-
tion theorem (of Banach-Kakutami-Riesz) for
linear and continuous functionals; they are
uniquely determined by a pair of Radon mea-
sures µ on [0, 1]
A partial order in the set R can be introduced
by defining the subset of ’positive’ordered fuzzy
numbers. We say the fuzzy number pair a =
(aup, adown) is not less than zero, and write

a ≥ 0 iff (aup + adown) ≥ 0, (4)

where the plus is taken pointwise .
We should notice, that after publishing our
recent paper [20] we were told about the pa-
per of Goetschel and Voxman [9], in which a
Banach structure of an extension of convex
fuzzy numbers was introduced. However, the
authors of [9] were only interested in the lin-
ear structure of this extension.

5 Examples

In this section we define some fuzzy numbers
and perform the previously defined operations
of them.
For reference, in the following Tab. 1 we give
the formulas by which the plotted examples
have been generated.

aup = 1− (id− 1)2

adown = 1 + (1− id)2

bup = 2 + id

bdown = 4− id

cup = 4− id

cdown = 2 + id

Table 1: Definitions of some fuzzy numbers.

In all figures plots of each pair are made in ac-
cordance to the classical representation, where
y variable(the vertical one) is regarded as a
function of x variable (the horizontal one).

Fig. 1: Ordered fuzzy number a .

Moreover, the first element of the pair con-
tains a small square at the bottom, when the
x axis is reached. Here the function id denotes
the identity, i.e. id(y) = y for any y ∈ [0, 1],
while the square is taken pointwise (not su-
perposition).

Fig. 2: Ordered fuzzy number b.

Notice that the numbers b and c differ in the
orientation, only: the number c has positive
orientation (with respect to the assumed co-
ordinate system), while the number b has neg-
ative one. One can say that the ordered num-
ber c is the reverse of the number b. In next
figures results of operations are presented.

Fig. 3: Difference d of a and b.
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The final pair of pictures represent the result
of two other algebraic operations.

Fig. 4: Ratio q of a and b.

Notice the number d is not-proper: its mem-
bership relation is not functional.
At this point it could be suitable to refer to
our previous papers (cf. [17, 18, 19, 20] and
to recall previous definition and denotations:
Definition 2(after [20]) By ordered fuzzy
real we mean ordered pair A = (µ↑A, µ↓A), where
µ↑A, µ↓A : [0, 1] → R are continuous functions.

Notice that here arrow up and arrow down are
use for up-branch and down-branch (down-
part), respectively.
In [18], a new concept of a fuzzy observation
f , has been introduced, which can help in
finding appropriate motivations for the con-
cept introduced. However, because of the lack
of the space we are not going to develop this
concept, and refer the reader to that paper.
Notice, that the fuzzy observation can play
the role of the primitive concept in this ap-
proach.

6 Conclusions

Existing algebraic operations on fuzzy num-
bers, especially those for fuzzy numbers of L–
R type or convex fuzzy numbers (see [11]) and
those basing on the Zadeh’s extension prin-
ciple are leading to interval analysis and sev-
eral drawbacks: i) they do not possess neu-
tral elements of addition and multiplication,
ii) they lead to the blow-up of the width of
supports (i.e. fuzziness) after multiple fuzzy
operations, iii) they cannot be equipped with
a linear structure and hence any norm.

In our opinion all those drawbacks are elim-
inated in the new model. Moreover, in the
new model the fuzzy numbers the extra fea-
ture, called the orientation requires a new in-
terpretation as well as a special care in deal-
ing with ordered fuzzy numbers. For the new
type of fuzzy numbers one can relate addi-
tionally to its opposite also its complemen-
tary number, which can play the role of the
opposite number in the sense of the Zadeh’s
model, since the sum of the both – the (or-
dered fuzzy) number and its complementary
number – gives a fuzzy zero, non-crisp in gen-
eral. However, the sum of any new type fuzzy
number and its opposite number gives the
crisp zero. This is due to the fact that mul-
tiplication by negative scalars, i.e. crisp neg-
ative numbers, affects not only the support
but also the orientation.
The proposed operations have been implemen-
ted in the form of a fuzzy calculator working
as the algebra under Windows by Mr.Roman
Koleśnik. First, however, a fuzzy arithmome-
ter was implemented in the Delphi environ-
ment by my Ph.D. student Mr.Piotr Proko-
powicz. [16, 17, 19].
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[20] Kosiński W., Prokopowicz P., Ślȩzak D.,
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