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Fig. 1.    I/V Curves for the Curtice model 
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Abstract. We have developed a Neural Network model able to reproduce some nonlinear characteristics of an 
electronic device. However, electronic devices nonlinear analysis requires an analytical model, that allows to draw 
conclusions about the device behavior. Such a model can be the Volterra series representation, which is a series 
that has some particular terms, named the “Volterra kernels”. We want to show in this work how a Volterra model 
can be built using the parameters of the proposed Neural Network model. We present a method for estimating the 
Volterra kernels using the Neural Network parameters and some simulation results. 
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1  Introduction 
The classic representation of a nonlinearity inside an 
electronic device/element, based on a nonlinear 
equivalent circuit , is generally an equation, such as  
current-voltage and charge-voltage rela tionships. These 
models, however, only describe the input/output 
behavior of the device/element. For example, the  
generally known and widely accepted Field Effect 
Transistor (FET) model: the Curtice Model [1]. The 
current-voltage equation for the cubic Curtice model is 
 

(1) 
where  
V1=Vgs[1 + β(Vds0-Vds),  
Vgs and Vds are the intrinsic voltages (gate to source 
voltage and drain to source voltage, respectively), and 
Ids is the drain to source current. This model reflects 
the input/output behavior of the drain to source current 
Ids, that is function of the intrinsic voltages of the FET, 
Vgs and Vds.  

Simulations performed in a microwave circuits 
simulator show the I/V (current vs. voltage) Curves of 
the model (Fig. 1) , for different voltages combinations, 
using the following values: Vgs = [-1…0] step 0.2, Vds 
= [0…5] step 0.5, β = 0, χ = 0.3.  
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
The current Ids accounts for most of the nonlinear 

behavior in the device. However, there are other 
elements that also contribute to the nonlinearity of the 
model: the capacitances. The capacitance relationship 
in function of the voltage C(V) is given in (2) where 
CJ0 is the zero bias capacitance, φ  is the barrier height 
(V≤φ) and γ is the grading coefficient (an empirical 
value, 1/3 ≤ γ ≥ ½).  
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These models, however, only show the input/output 
characteristic s of the current (1) and the capacitance 
(2), but do not allow a deeper analysis about the device 
behavior  that could help an electronic designer. One of 
the approaches regarding this analysis is the 
approximation of the nonlinear behavior of the element 
under consideration with a numerical series such as the 
Volterra series. This series has some terms named 
“kernels” that allow a deeper understanding of the 
device. Its main disadvantage, however, is the 
analytical expression or calculation of its kernels. Our 
proposal is to use a neural network and its parameters, 
to help in the building of the Volterra series and the 
calculation of its kernels. 

In section 2 we present the Volterra series analysis 
and related work regarding the use of neural networks 
for Volterra kernels calculation. In section 3 we present 
our Neural Network based model and how to calculate 
the kernels from parameters of the network. 
Simulations results are presented in section 4. The 
conclusions of the work can be found in section 5. 

 
 

2  Volterra Series 
For a single-input, single-output (SISO) non-linear 
dynamical system, with an output time function, y(t), 
and an input time function, x(t), it can be represented 
exactly by a converging infinite series of the form 
  

  (3) 
 

 (4) 
 
 
This system can be represented to any desired degree 

of accuracy by a finite series of the form (5). This 
equation is known as the Volterra series expansion. The 
h0,h1,h2,…,hn are known as the Volterra kernels of the 

system [2] [3]. The kernel h0 is called the impulse 
response of the system, h1 is the first order kernel, h2 is 
the second order kernel, and in general, hn is the nth 
order kernels of the series.  

 (5) 

 

 
If the continuous Volterra series model (4) is express 

in discrete form, then it becomes 
 

(6) 
 
 
 

 
In nonlinear microwave analysis, in particular for 

small signal regime, the tool for excellence has been 
the Volterra-series analysis [4]. The Volterra 
description for an electronic device is based on Taylor-
series expansions of the device nonlinearity around a 
fixed bias point or around a time-varying signal.  

Example of the first type of model is the Ids current 
in a FET around the bias voltages (7) (in this case the 
series is developed up to the third order kernels), where 
Vgs0 andVds0 are the internal bias voltages and vgs 
and vds are the incremental intrinsic voltages respect to 
the bias voltages. The coefficients of the series are the 
first order (Gm1 and Gds), second order (Gm2, Gds2 
and Gmd) and third order (Gm3, Gds3, Gm2d, Gmd2) 
derivatives of the current with respect to the voltage. 
These coefficients happen to be the Volterra kernels of 
the series. An example of the second type of Volterra 
model can be the capacitance C in function of a time 
varying voltage (8), considering x(k) as a discrete 
sample of the voltage (in this case, we have used two 
samples, x(0)=V(t) and x(k-1)=V(t-1) ). 

 
(7) 

 
 
 
 
 

 
The derivatives allow the inference of some device 

characteristics of great concern for the microwave 
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Fig. 2. Theoretical capacitance curve  
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designer, i.e. nonlinear distortion phenomena. We can 
say that a good device model not only must accurately 
reflect its nonlinear characteristics but also its 
derivative information. That kind of information can be 
inferred from the Volterra model and its kernels. 

 
(8) 

 
 
 
 
 
 

 
 
However, kernels calculation, analytical expression 

or measurement is very a complicated and time-
consuming task [5][6][7]. Some authors have proposed  
a method of extracting the Volterra kernels of any order 
as a function of the weights and bias values of a feed-
forward time delayed neural network with one hidden 
layer [8][9]. Even kernels calculation with different 
neural networks topologies have been proposed 
[9][11][12], also in the electronics field [13]. In [14] it 
is compared the use of  two types of Radial Basis 
Function neural networks and an MLP to describe the 
current nonlinearity, where measurements of the 
current and its derivatives are necessary for the model. 
All of these approaches deal with time series inputs and 
only one variable. In our case, however, we want to 
represent not only that, but also a function that depends 
on two variables and its model is developed around 
bias points.  

Our approach is very simple and straightforward, 
only input/output device measurements or simulations 
are necessary, and the training of a standard MLP 
Neural Network model. With only that elements, after 
performing some very simple calculations, the Volterra 
series and its kernels can be obtained, for any type of 
Volterra representation.  

 
 

3  Proposed Neural Network model 
The topology of the neural network that we propose is a 
very simple one (Fig. 3). The input layer has two inputs 
(a and b), which are multiplied by its corresponding 
weights wij (i,j=[1…2]) and propagated through the 
network. In the hidden layer there are two hidden 

neurons. As their activation function, following [8], we 
have chosen the hyperbolic tangent (tanh).  Each of 
them receives the sum of the weighted inputs plus its 
corresponding bias value bk (k=[1…2]). The output 
neuron has a linear activation function and therefore the 
output of the neural network (y) is calculated as the 
sum of the weighted outputs of the two hidden neurons 
plus a bias (9).  

 

 

 

 

 
 

(9) 
 
 
 

 
We want to show the equivalence between the output 

of our neural network model (9), that will learn the 
nonlinear relationship of some element in the Curtice 
model, and its Volterra series representation ((7) for the 
current, (8) for the capacitance).  

Following the approach in [8], we expand the output 
of our network model (9) as a Taylor series around the 
bias values of the hidden nodes 

 
(10) 

 
 
 
 
where tanh(j) is the jth derivate of the hyperbolic tangent 
(tanh). Developing the brackets in (10) and 
accommodating the terms according to their derivative 
order, yields (11). 

In the case of the current Ids (7), considering a = 
vgs, b = vds and y = Ids, it is quite straightforward to 
recognize the kernels as the terms between brackets in 
(11). It is quite simple also to calculate the values of 
these kernels using the neural network parameters: the 
weights, the bias values and the derivatives of the 
hyperbolic tangent. Similarly, with the Capacitance 
model (8), considering a = V(t)= 0 ,  b = V(t-1) = 1 and 

b1 

Fig. 3.   Proposed Neural  Network model 
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y = C, here are also evident the Volterra kernels, and 
how they can be calculated from the neural network 
parameters. 

 
(11) 

 
 
 
 
 
 
 
 

 
 
 
 
 
Equations (12) to (14) show how to calculate the 

kernels from the weights and bias values of the 
network. These are general formulas that allow to 
calculate any kernel having into account any number of 
input neurons and any number of hidden neurons. Due 
to space restrictions we only show the calculations for 
the impulse response, the first and second order kernels  
of our proposed neural network model, but also higher 
order kernels could be obtained with little effort. The 
hyperbolic tangent derivatives have been developed in 
the formulas. 

 (12) 
 
 

(13) 
 
 

(14) 
 

 
where k, k1, k2 = [0…1] for the neural network in Fig. 
3. 

 
 

4  Simulation Results 
We have used (1) and (2) to generate the training data, 
simulations performed with an electronics circuits 
analyzer, but also laboratory measurements could have 
been used because only the input/output data is 
necessary. 

Once the neural network model was trained, using 
back-propagation and the Levenberg-Marquardt 
algorithm, to reproduce the nonlinear behavior of the 
system, we have extracted the weights and bias values 
from the neural network topology and have calculated 
the Volterra kernels of the system up to the third order. 
Then we have built the functions (7) and (8) with the 
calculated values, and we have plotted it against the 
original element behavior. The comparison between the 
drain to source current Ids original equation (*) and the 
Volterra model approximation based on the parameters 
of the neural network (-) can be seen in Fig. 4. It can be 
seen that our neural network based  approximation is 
very close to the original equation, even considering 
that the Volterra series is an approximation (the 
average error is in the order of 1e-07), and therefore the 
inclusion in the series of more kernels would allow for 
a better representation. We have also simulated the 
capacitance curve in function of a voltage following a 
quadratic law over time. We have set the parameters in 
equation (2) to some typical values: CJ0=1, φ=0.7, 
γ=1/3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once the network was trained, with and average 

error of 1e-05, we have build different Volterra 
approximations (8) to be able to compare among them 
and with respect to the original function C(V). The 
series containing kernels up to the first order only was 
called Vh1. The successive series having higher order 
kernels (second order, third order) were named 
respectively Vh2 and Vh3 (Fig. 5). 

As expected, when more terms are added to the 
Volterra approximation, it can better reproduce the 
original function it tries to estimate. We have also 
performed other simulations slightly changing the 

Fig. 4.    I/V Curves of the Curtice model (*) vs. 
I/V Curves of the Volterra-NN model (-) 



Fig. 6. Comparison of second order kernels  
 

topology of the network on Fig. 3 adding one more 
delayed inputs to the input layer, to see if the kernels 
obtained were better to calculate the nonlinearity of the 
system. That is to say, we wanted to check if adding 
memory to the system (more past values) the 
approximation obtained would improve. The results are 
presented in Fig. 6. The Volterra second order 
approximations with two delayed inputs (V22-h2) and 
three delayed inputs (V32-h2) can hardly be 
distinguished. They have almost the same values. That 
gives us insight that adding memory to the system does 
not improve its Volterra approximation, but adding 
more kernels to the series does.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Conclusions 
We have developed a very simple Neural Network 
model which can reproduce the nonlinear behavior of 
an electronic device, in particular a Field-Effect 

Transistor (FET), modeled with the Curtice equations. 
The nonlinear elements that we have analyzed for this 
device were the drain to source current Ids and the 
capacitance C, using simulation data of its original 
input/output behavior. However, the construction of 
another model, the Volterra series model, allows a 
better understanding of the device non-linearity. In this 
work we have shown how these two models are related 
and we have explained here how it is possible to build a 
Volterra series analytical expression for any nonlinear 
element,  which can be a difficult task, using 
parameters of a trained neural network model  

From our simulation results we conclude that our 
approach is valid and that even when we have built a 
series having into account up to the third order kernels 
only, the approximation of the original function is quite 
accurate and fast. The simplicity of the calculations 
allowed us to try  different configurations for the neural 
network to analyze what happens if it is complicated 
with more input samples, that is to say more memory. 
Due to the kernels complex calculus, the Volterra series 
approximations generally are made up to the third order 
kernels.  With the help of the neural networks it could 
be easy to calculate higher order kernels and therefore 
obtain a more accurate representation of a nonlinear 
system. Especially in the case were the system 
equations are not available but only simulations or 
input/output measurement data.  

We want to highlight that our proposed approach 
implies and effective and concrete application of a 
neural network model in the electronics field , that 
allows the building of an analytical Volterra series 
representation for any electronic  device or element,  
with the help of a very simple neural network model 
that needs few data and some algebra, saving precious 
time to the microwave engineer at the moment of 
device analysis and design.  
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