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Abstract: - This paper investigates a self-organizing map algorithm which is simultaneously given multiple
inputs, and introduces a criterion of ordering process as the twist measurement for reference vectors in mul-
tidimensional array. The self-organizing algorithm and the criterion are termed the parallel self-organizing
algorithm and the index of twist, respectively. The algorithm updates reference vectors corresponding to re-
spective inputs at the same time, when multiple inputs are prepared at each step. The index of twist is the
criterion to evaluate the multidimensional ordering of the topological array for reference vectors. When the
parallel degree changes for the present algorithm, the topology preserving map after learning is evaluated by
utilizing the index of twist. By discussing the formation rate and the average distortion of topology preserving
map, the effectiveness of the present approach is examined.
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1 Introduction time, the parallel network which permits multiple
rﬁements to transit at each step is discussed for

Egg;e;r:;“seng?g’;rﬁ;’ ?Flr]e S;fﬁ-sfge;;w;ﬁgnaa opfield network [7]. It leads to different results
P 9 : bropag against the sequential operation [8]. Concerning

gorithm [2] for the former and Kohonen's Sehc_the arallel processing, the speed-up of the self-
organizing map algorithm [3] for the latter are P X 9, p P

well known. Kohonen’s self-organizing map jsorganizing map 1S attempted by the arrangement

. ) .. _._on linear chain and two-dimensional mesh of the
the neural network which adaptively classifies in: o
: ) transputer [9]. In the parallel vector quantization,

put patterns given to the first layer, and topo- . . : ) o
logically oraanizes outout nodes. in the twoafme result is shown in the average distortion, in
gically org X ' which the network has the partial and zero neigh-

layer structure [4]. The algorithm sequentiallyboring relations of reference vectors. In this al-

deals with the unit in the second layer which re- " . )
Ierthm, almost equivalent results to the sequen-

sponds to an m_put d_ata randomly chosen_at catal operation has been obtained [10]. However,
step. The algorithm is termed the sequential sel he parallel manner of tonolo reserving ma
organizing algorithm and its network, the sequen- P pology p g map

tial model. In the application of self-organizingIS not argued, and the convergence of reference

: : vectors is not mentioned.
algorithm, for example, the traveling salesman

problem can be solved in excellent results by tak- In this paper, a parallel self-organizing map al-
ing the elastic ring method [5],[6]. In the mean-gorithm which is simultaneously given multiple



inputs is presented. The algorithm updates refewherea(t) is the learning rate and is a decreasing
ence vectors corresponding to respective inputsfainction of time () < «(t) < 1). N.(¢) has a set
the same time, when multiple inputs are prepareaf indexes of topological neighborhoods for the
at each step. Furthermore, an index of twist iwinner ¢ at stept. If N.(¢) has an index of the
introduced in order to evaluate the ordering prowinner only, the algorithm becomes the standard
cess for reference vectors. The index is the crcompetitive learning.

terion to evaluate multidimensional ordering of
the topological array. The index of twist become
zero if the topology is perfectly preserved. When
the parallel degree changes for the present algi+ this section, a parallel self-organizing algo-
rithm, the topology preserving map after learnfithm is presented. The algorithm updates ref-
ing is evaluated by using the index of twist. Foerence vectors corresponding to respective input
one input and multiple inputs at each step, thoug¥ectors at the same time when multiple input vec-
the adaptation process generally yields differefiors are prepared at each step. To begin with, let

’SB Parallel Manner According to
Self-Organizing Map

results in neural networks, the self-organizind:, 2, - - -, ;} be the set of input vectors se-
algorithm produces almost same results for thected at steg, and let{w;, w,, ---, w,} be
present algorithm. By discussing the formatiothe set of reference vectors had ready beforehand.
rate and the average distortion of topology prefhe set of winner vector§c,, cs, - - -, ¢;} corre-
serving map, the effectiveness of the present apponding to respective input vectors are selected
proach is examined. as follows:

2 Self-Organizing Map by Kohonen Model ¢ = arg mjin{Hwi —wj||}. (3)

In Kohonen’s algorithm, the updating of refer-

ence vectors is modified to involve neighboring Using the winnek;, the reference vectap; is

relations in the output array. In the vector spacepdated at each step according to the following

R™, the inputz, which is generated on the prob-equation.

ability density functiorp(x), is defined. Thusg l

_has components froml_to x,. The output uni; Aw, = Z vy, (4)

is generally arranged in an array of one- or two-

dimensional maps, and is completely connected _

to the inputs by way ofu; . where the updating valug; of the reference vec-
Let () be an input vector at stepand let tOr w; is given as follows:

w;(0) be reference vectors composed:at ini- ,

tial values inR" space. For input vectar(t), we  v;; = { g(t) (z; —w;) (i ti Ne, (1)),

calculate the distance betwee(t) and the refer- (otherwise)

ence vectow;(t), and select the reference Vectol hare N,

as a winnek minimizing the distance. The pro-

cess is written as follows:

()

.(t) is the set of the winnee; and its
topological neighborhood reference vectors, and
is a decreasing function of time.

¢ = argmin{||z — w,|}, (1) In_the above_ updqting process, since not only

i a winner and its neighborhood vectors but also

where arg{) gives an index of the winner. multiple winners and their neighborhood vectors
With the use of the winner, the reference vec- are updated at each step, reference vectors at each

tor w; () is updated as follows: step are calculated as the composition of their

vectors. Ifc; = ¢;, the valuew; is also updated as
a(t) (x —w;) (i € N.(t)), the composition under the influence of their vec-
0 (otherwise) tors. Then we term it the parallel self-organizing



algorithm (or the parallel updating process) and
its network, the parallel model.

In the updating process, one step of the above
parallel model corresponds tosteps of the se-
guential model. Therefore, the maximum speed-
up is at/ times in the parallel model if it is pos-
sible to obtain similar results such that in the se-
guential model, where is the number of input
vectors. Here, we define thais possible to be
changed into some numbers, wheris smaller
than or equal to the number of reference vectors
prepared in advance. Therefore we propose an-
other parallel model which updates orilyefer-
ence vectors corresponding fo:/h| pieces of
input data at each step, whefas a positive in-
teger,|m/h| is a reasonable number to perform
the parallel process at a time, ahe| means a
maximum integer smaller than or equal to a real
numberm. Then we also term it the parallel self-
organizing algorithm and its network, the parallel
model.

[Parallel self-organizing algorithm]

Step 1 Initialization:

Table 1: Sequential and parallel models.

Sequential =1 [
Parallel l1<l<m .'.'.
=m iii
O O
O O
@ remarked unit

first neighbor hood unit

& second neighborhood unit

Figure 1:Concept of the index of twist.

Give initial reference vectorfw, wo, According to the above-mentioned discussion,
-+, wy, }, neighborhood sev; for each three models are considered, as shown in Ta-

reference vectow;, and parallel degree  ble 1.

“Sequential model” is the conventional

Sett « 0. technique dealt with sequentially. For “Parallel
model”, let A be the case whetéas any size of

Step 2 Selection of input vectors:

m (I = [m/h]), and let B be the case wherbas

Select the set of input vectofs:,, 2, - -+, all numbers ofn (I = m). The case of i is well
x,;} in the input space at random. known as Kohonen’s model. Then, we will con-
sider models i, ii, and iii in the following section.

Step 3 Determination of winners:

Determine the winner; correspondingto 4 Twist Measurement

xz; (1=1,2,---,1),according to Eq. (3).

For evaluating self-organizing map formed by

learning, two measures for reference vectors are

Step 4 Update of reference vectors:
Updatew, according to Egs. (5) and (4),
by usingc; as determined in Step 3. Set
t—t+1.

Step 5 Termination Condition:

| Ordering stage.

considered as follows [3]:

II Convergence phase.

If ¢ = 7)., then terminate, otherwise g0 The degree of ordering is expressed as the “in-
to Step 2. dex of disorder” in terms of the way of | [11]. For



the way of Il, asymptotic distributions are theo-alueC' in proportion to the rate of them is given.
retically discussed as the adaptive vector quanthimost any of C' will decrease in the learning
zation [12]-[16]. After reference vectors becom@rogress. Therefore, it is considered as an in-
ordered, their final convergence are discussed. éiex which generalized the index of disordér.
this section, we consider the way of I. Since thés a good criterion to show the ordering process
conventional index of disorder [4] is adjusted tof reference vectors.
one-dimensional case only, the expansion is not
found to multi-dimensional case so that the index
observes the perfect ordering of reference vec
tors.

In order to evaluate the degree of ordering for
reference vectors in the updating process, we de-

fine a positive integef' as follows: @¢=0 ®)e=1 (©)t=10

C= ZH(dij —di, >0) je N} k¢ N7 (6)

i=1

whered,; = |Jw;—w,||. N} andN? are the topo-
logical neighborhood sets of vectar;, andH ()
is an indicator function as follows: ()¢ = 100 ©)t = 500 0 = 1000

H(9) = { L Oistrue, Figure 2:Movement of reference vectors in the rect-
0 fisfalse. angle input space for the parallel mode 100).

We call C' an “index of twist.” In case of
the square arrangement as shown in Fig.Vi,
and N? are the set to the first neighborhood and
the set to the second neighborhood, respectively 3
In this figure, each point shows reference vector
and the line which connect®; with w; means
the nearest neighborhood to each othéf! is
the set composed of the remarked vector and its
first neighborhood vectors, because the square ar-
rangement is considered in this cad& is added
the set of the second neighborhood vector§ to
Then there is a region composed of the remarke
vectorw; and its first neighborhoods. The in-
dex of twist shows the amount in which other
reference vectors enter this region, except for the
remarked, its first neighborhood, and its secondligyre 3: Movement of reference vectors in the
neighborhood vectors. When the configuration gfexagonal input space for the parallel model =
reference vectors are changed, the ordering prgyo).
cess may be shown in the index of twist by em-
ploying N} and N? suitably.

Any value ofC' is always greater than or equa
to zero C' > 0). If reference vectors are com-For the numerical experiments, input patterns are
pletely ordered, then' = 0 holds. And if there uniformly prepared from the entire spece. In-
are topological defects in the updating process,aut vectors are randomly assigned with ] on

@t =0 ()t =1 ©t=10

(d)¢ =100 (e)t = 500 () t = 1000

o Numerical Experiments



map [17] or the topology preserving map [18].

Furthermore we define a non-topological map

(denoted by NTM) which has the “topological
. defects” [1]. Two examples, TM and NTM, are
shown in Fig. 4. Table 2 shows the number of
TM, which is performed ori000 trials for initial
values given at random, for each of the sequential
and parallel{ = 10 and100) models. This table
gives notice that about a same number of TM is
Figure 4:Figures to explain of the topological mappbtained in both arrangements. However, there

(a) Topological map (TM) (b) Non-topological map (NTM)

and non-topological map. seems to be general trend that the number of TM
decreases with a greater parallel degree.

Table 2: Number of TM for each model. Figure 5 shows the values for the index of twist

versus the learning iterations. The models are (a)

Models | I | T, NumberofTM sequential and (b) parallel models in the rectan-

_ Rect.| Hexa. gle arrangement, (c) sequential and (d) parallel

Sequential 1 | 100000 | 942 | 936 models in the hexagonal arrangement. For all the
Parallel |10 | 10000 | 929 919 models, the value of the index of twist rapidly

100 | 1000 | 914 906 drops at first, and gradually approaches zero af-

terwards. After the ordering ends, reference vec-
tors approximate the input space.

the z andy axes, and reference vectors are dis- For evaluating the approximate accuracy, the
tributed around the central space as initial valued/erage distortion is presented as follows:
atrandom. The performance comparisons are ex-
ecuted for each model described in the previous E=—%"D, (7)
section. The ordering process of reference vec- M =

tors for each model is evaluated by the index of
twist. Here, the number of reference vectors i
100 (i.e., m = 100), and the parallel degrdeis

here) is the total number of input vectors, and
thei-th partition errorD; is given by the follow-

an integer. As discussed abovsyill be decided Ing equation:
for each model. The initial topological neighbor- 1
hoodN (0) has a set of indexes the first to the fifth Di=— > dx,w), (8)

topological neighborhoods including the winner. Les:

N(t) is gradually decreased with time, and has @heren is the dimension of the input vector, and
winner only after the half of the maximum learn-q(x,w,) is the square of the Euclidean distance
ing iterations. Then the parameters are chosen pstween the input vectar and the reference vec-
follows: a(t) = ag(1 — t/Thua), a0 = 0.05,and  tor w; (i.e.,d(zw;) = || —w;|?).
Tinae = 100000/1. In Fig. 6, the average distortion in the rectan-
The movements of reference vectors in thgle and the hexagonal arrangements are shown
rectangle and hexagonal arrangements for thehen the parallel degree changes. Here, we ob-
parallel model { = 100) are shown in Figs. 2 tained the average distortion when the number of
and 3, respectively. As learning progresses, reflaput vectors requires)00 chosen from the input
erence vectors approximate the input space ag@ace randomly. The results are the averages of
form their maps in each arrangement. 1000 trials. In this case, it is proven that the av-
Here we define a topological map (denoted bgrage distortion does not change almost, even if
TM), in detail, it is the “maximally ordered” state the parallel degree changes. It is also proven that
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Figure 5:Index of twist versus learning iteration for each model. The models are (a) sequential and (b) parallel
models in the rectangle arrangement, (c) sequential and (d) parallel models in hexagonal arrangement.

the average distortion is the hexagonal arranglexagonal arrangements in changing the initial
ment is lower than that in the rectangle arrangesalue of the topological neighborhoods 10
ment. This means that the rectangle arrangemdndm 5 in Fig. 9. In this case, the topology pre-
is not always optimum for the approximation ofserving maps are formed &80%. Unlike in the
the input space. For the standard deviation afase of Fig. 6, the average distortion rises as a
subdistortions, however, the hexagonal arrangehole, and the tendency of the average distortion
ment rises from the rectangle arrangement, amad the rectangle and hexagonal arrangements is
the dispersion of the hexagonal arrangement &so different. It seems that neighboring effects
intensified as shown in Fig. 7. are strong and lead to excellent results for the for-
Figure 8 shows the number of TM in the rect/Mation of the topology preserving maps, but they

angle and hexagonal arrangements. The top(Q[ing on reverse effects for the average distortion.

ogy preserving map is formed at the probability
of about90%, even if the parallel degree changes.

The average distortion in the rectangle and
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Figure 6: Average distortion of the rectangle andrigure 7: Standard deviation among sub-distortions
hexagonal neighborhood arrangements. The resuifghe rectangle and hexagonal neighborhood arrange-
are the averages of 1000 trials, randomly chosements.
among 5000 data.
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