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Abstract: - This paper investigates a self-organizing map algorithm which is simultaneously given multiple
inputs, and introduces a criterion of ordering process as the twist measurement for reference vectors in mul-
tidimensional array. The self-organizing algorithm and the criterion are termed the parallel self-organizing
algorithm and the index of twist, respectively. The algorithm updates reference vectors corresponding to re-
spective inputs at the same time, when multiple inputs are prepared at each step. The index of twist is the
criterion to evaluate the multidimensional ordering of the topological array for reference vectors. When the
parallel degree changes for the present algorithm, the topology preserving map after learning is evaluated by
utilizing the index of twist. By discussing the formation rate and the average distortion of topology preserving
map, the effectiveness of the present approach is examined.
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1 Introduction

For neural networks, there exist supervised and
unsupervised learnings [1]. Back-propagation al-
gorithm [2] for the former and Kohonen’s self-
organizing map algorithm [3] for the latter are
well known. Kohonen’s self-organizing map is
the neural network which adaptively classifies in-
put patterns given to the first layer, and topo-
logically organizes output nodes, in the two-
layer structure [4]. The algorithm sequentially
deals with the unit in the second layer which re-
sponds to an input data randomly chosen at each
step. The algorithm is termed the sequential self-
organizing algorithm and its network, the sequen-
tial model. In the application of self-organizing
algorithm, for example, the traveling salesman
problem can be solved in excellent results by tak-
ing the elastic ring method [5],[6]. In the mean-

time, the parallel network which permits multiple
elements to transit at each step is discussed for
Hopfield network [7]. It leads to different results
against the sequential operation [8]. Concerning
the parallel processing, the speed-up of the self-
organizing map is attempted by the arrangement
on linear chain and two-dimensional mesh of the
transputer [9]. In the parallel vector quantization,
a fine result is shown in the average distortion, in
which the network has the partial and zero neigh-
boring relations of reference vectors. In this al-
gorithm, almost equivalent results to the sequen-
tial operation has been obtained [10]. However,
the parallel manner of topology preserving map
is not argued, and the convergence of reference
vectors is not mentioned.

In this paper, a parallel self-organizing map al-
gorithm which is simultaneously given multiple



inputs is presented. The algorithm updates refer-
ence vectors corresponding to respective inputs at
the same time, when multiple inputs are prepared
at each step. Furthermore, an index of twist is
introduced in order to evaluate the ordering pro-
cess for reference vectors. The index is the cri-
terion to evaluate multidimensional ordering of
the topological array. The index of twist becomes
zero if the topology is perfectly preserved. When
the parallel degree changes for the present algo-
rithm, the topology preserving map after learn-
ing is evaluated by using the index of twist. For
one input and multiple inputs at each step, though
the adaptation process generally yields different
results in neural networks, the self-organizing
algorithm produces almost same results for the
present algorithm. By discussing the formation
rate and the average distortion of topology pre-
serving map, the effectiveness of the present ap-
proach is examined.

2 Self-Organizing Map by Kohonen Model

In Kohonen’s algorithm, the updating of refer-
ence vectors is modified to involve neighboring
relations in the output array. In the vector space
Rn, the inputx, which is generated on the prob-
ability density functionp(x), is defined. Thus,x
has components fromx1 to xn. The output unityi

is generally arranged in an array of one- or two-
dimensional maps, and is completely connected
to the inputs by way ofwij .

Let x(t) be an input vector at stept and let
wi(0) be reference vectors composed ofk at ini-
tial values inRn space. For input vectorx(t), we
calculate the distance betweenx(t) and the refer-
ence vectorwi(t), and select the reference vector
as a winnerc minimizing the distance. The pro-
cess is written as follows:

c = arg min
i
{‖x−wi‖}, (1)

where arg(·) gives an indexc of the winner.
With the use of the winnerc, the reference vec-

tor wi(t) is updated as follows:

∆wi =

{
α(t) (x−wi) (i ∈ Nc(t)),
0 (otherwise),

(2)

whereα(t) is the learning rate and is a decreasing
function of time (0 < α(t) < 1). Nc(t) has a set
of indexes of topological neighborhoods for the
winner c at stept. If Nc(t) has an index of the
winner only, the algorithm becomes the standard
competitive learning.

3 Parallel Manner According to
Self-Organizing Map

In this section, a parallel self-organizing algo-
rithm is presented. The algorithm updates ref-
erence vectors corresponding to respective input
vectors at the same time when multiple input vec-
tors are prepared at each step. To begin with, let
{x1, x2, · · ·, xl} be the set ofl input vectors se-
lected at stept, and let{w1, w2, · · ·, wm} be
the set of reference vectors had ready beforehand.
The set of winner vectors{c1, c2, · · · , cl} corre-
sponding to respective input vectors are selected
as follows:

ci = arg min
j
{‖xi −wj‖}. (3)

Using the winnerci, the reference vectorwi is
updated at each step according to the following
equation.

∆wi =
l∑

j=1

vij, (4)

where the updating valuevij of the reference vec-
tor wi is given as follows:

vij =

{
α(t) (xj −wi) (i ∈ Nci

(t)),
0 (otherwise),

(5)

whereNci
(t) is the set of the winnerci and its

topological neighborhood reference vectors, and
is a decreasing function of time.

In the above updating process, since not only
a winner and its neighborhood vectors but also
multiple winners and their neighborhood vectors
are updated at each step, reference vectors at each
step are calculated as the composition of their
vectors. Ifci = cj, the valuewi is also updated as
the composition under the influence of their vec-
tors. Then we term it the parallel self-organizing



algorithm (or the parallel updating process) and
its network, the parallel model.

In the updating process, one step of the above
parallel model corresponds tol steps of the se-
quential model. Therefore, the maximum speed-
up is atl times in the parallel model if it is pos-
sible to obtain similar results such that in the se-
quential model, wherel is the number of input
vectors. Here, we define thatl is possible to be
changed into some numbers, wherel is smaller
than or equal to the number of reference vectors
prepared in advance. Therefore we propose an-
other parallel model which updates onlyl refer-
ence vectors corresponding to�m/h� pieces of
input data at each step, whereh is a positive in-
teger,�m/h� is a reasonable number to perform
the parallel process at a time, and�m� means a
maximum integer smaller than or equal to a real
numberm. Then we also term it the parallel self-
organizing algorithm and its network, the parallel
model.

[Parallel self-organizing algorithm]

Step 1 Initialization:
Give initial reference vectors{w1, w2,
· · ·, wm}, neighborhood setNi for each
reference vectorwi, and parallel degreel.
Sett← 0.

Step 2 Selection of input vectors:
Select the set of input vectors{x1, x2, · · ·,
xl} in the input space at random.

Step 3 Determination of winners:
Determine the winnerci corresponding to
xi (i = 1, 2, · · · , l), according to Eq. (3).

Step 4 Update of reference vectors:
Updatewi according to Eqs. (5) and (4),
by usingci as determined in Step 3. Set
t← t + 1.

Step 5 Termination Condition:
If t = Tmax then terminate, otherwise go
to Step 2.

Table 1: Sequential and parallel models.

Sequential l = 1 i
A 1 < l < m iiParallel
B l = m iii

remarked unit

first neighborhood unit

second neighborhood unit

Figure 1:Concept of the index of twist.

According to the above-mentioned discussion,
three models are considered, as shown in Ta-
ble 1. “Sequential model” is the conventional
technique dealt with sequentially. For “Parallel
model”, let A be the case wherel has any size of
m (l = �m/h�), and let B be the case wherel has
all numbers ofm (l = m). The case of i is well
known as Kohonen’s model. Then, we will con-
sider models i, ii, and iii in the following section.

4 Twist Measurement

For evaluating self-organizing map formed by
learning, two measures for reference vectors are
considered as follows [3]:

I Ordering stage.

II Convergence phase.

The degree of ordering is expressed as the “in-
dex of disorder” in terms of the way of I [11]. For



the way of II, asymptotic distributions are theo-
retically discussed as the adaptive vector quanti-
zation [12]–[16]. After reference vectors become
ordered, their final convergence are discussed. In
this section, we consider the way of I. Since the
conventional index of disorder [4] is adjusted to
one-dimensional case only, the expansion is not
found to multi-dimensional case so that the index
observes the perfect ordering of reference vec-
tors.

In order to evaluate the degree of ordering for
reference vectors in the updating process, we de-
fine a positive integerC as follows:

C =
n∑

i=1

H(dij − dik > 0) j ∈ N1
i , k /∈ N2

i ,(6)

wheredij = ‖wi−wj‖. N1
i andN2

i are the topo-
logical neighborhood sets of vectorwi, andH(θ)
is an indicator function as follows:

H(θ) =
{

1 θ is true,
0 θ is false.

We call C an “index of twist.” In case of
the square arrangement as shown in Fig. 1,N 1

i

andN2
i are the set to the first neighborhood and

the set to the second neighborhood, respectively.
In this figure, each point shows reference vector
and the line which connectswi with wj means
the nearest neighborhood to each other.N 1

i is
the set composed of the remarked vector and its
first neighborhood vectors, because the square ar-
rangement is considered in this case.N 2

i is added
the set of the second neighborhood vectors toN 1

i .
Then there is a region composed of the remarked
vector wi and its first neighborhoods. The in-
dex of twist shows the amount in which other
reference vectors enter this region, except for the
remarked, its first neighborhood, and its second
neighborhood vectors. When the configuration of
reference vectors are changed, the ordering pro-
cess may be shown in the index of twist by em-
ployingN 1

i andN2
i suitably.

Any value ofC is always greater than or equal
to zero (C ≥ 0). If reference vectors are com-
pletely ordered, thenC = 0 holds. And if there
are topological defects in the updating process, a

valueC in proportion to the rate of them is given.
Almost any ofC will decrease in the learning
progress. Therefore, it is considered as an in-
dex which generalized the index of disorder.C
is a good criterion to show the ordering process
of reference vectors.

(a) t = 0 (b) t = 1 (c) t = 10

(d) t = 100 (e) t = 500 (f) t = 1000

Figure 2:Movement of reference vectors in the rect-
angle input space for the parallel model (l = 100).

(a) t = 0 (b) t = 1 (c) t = 10

(d) t = 100 (e) t = 500 (f) t = 1000

Figure 3: Movement of reference vectors in the
hexagonal input space for the parallel model (l =
100).

5 Numerical Experiments

For the numerical experiments, input patterns are
uniformly prepared from the entire spece. In-
put vectors are randomly assigned with [0, 1] on



(a) Topological map (TM) (b) Non-topological map (NTM)

Figure 4: Figures to explain of the topological map
and non-topological map.

Table 2: Number of TM for each model.

Number of TM
Models l Tmax Rect. Hexa.

Sequential 1 100000 942 936
10 10000 929 919

Parallel
100 1000 914 906

the x andy axes, and reference vectors are dis-
tributed around the central space as initial values
at random. The performance comparisons are ex-
ecuted for each model described in the previous
section. The ordering process of reference vec-
tors for each model is evaluated by the index of
twist. Here, the number of reference vectors is
100 (i.e., m = 100), and the parallel degreel is
an integer. As discussed above,l will be decided
for each model. The initial topological neighbor-
hoodN(0) has a set of indexes the first to the fifth
topological neighborhoods including the winner.
N(t) is gradually decreased with time, and has a
winner only after the half of the maximum learn-
ing iterations. Then the parameters are chosen as
follows: α(t) = α0(1− t/Tmax), α0 = 0.05, and
Tmax = 100000/l.

The movements of reference vectors in the
rectangle and hexagonal arrangements for the
parallel model (l = 100) are shown in Figs. 2
and 3, respectively. As learning progresses, ref-
erence vectors approximate the input space and
form their maps in each arrangement.

Here we define a topological map (denoted by
TM), in detail, it is the “maximally ordered” state

map [17] or the topology preserving map [18].
Furthermore we define a non-topological map
(denoted by NTM) which has the “topological
defects” [1]. Two examples, TM and NTM, are
shown in Fig. 4. Table 2 shows the number of
TM, which is performed on1000 trials for initial
values given at random, for each of the sequential
and parallel (l = 10 and100) models. This table
gives notice that about a same number of TM is
obtained in both arrangements. However, there
seems to be general trend that the number of TM
decreases with a greater parallel degree.

Figure 5 shows the values for the index of twist
versus the learning iterations. The models are (a)
sequential and (b) parallel models in the rectan-
gle arrangement, (c) sequential and (d) parallel
models in the hexagonal arrangement. For all the
models, the value of the index of twist rapidly
drops at first, and gradually approaches zero af-
terwards. After the ordering ends, reference vec-
tors approximate the input space.

For evaluating the approximate accuracy, the
average distortion is presented as follows:

E =
1

M

k∑
i=1

Di, (7)

whereM is the total number of input vectors, and
the i-th partition errorDi is given by the follow-
ing equation:

Di =
1

n

∑
x∈Si

d(x, wi), (8)

wheren is the dimension of the input vector, and
d(x,wi) is the square of the Euclidean distance
between the input vectorx and the reference vec-
tor wi (i.e.,d(x,wi) = ‖x−wi‖2).

In Fig. 6, the average distortion in the rectan-
gle and the hexagonal arrangements are shown
when the parallel degree changes. Here, we ob-
tained the average distortion when the number of
input vectors requires5000 chosen from the input
space randomly. The results are the averages of
1000 trials. In this case, it is proven that the av-
erage distortion does not change almost, even if
the parallel degree changes. It is also proven that
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Figure 5:Index of twist versus learning iteration for each model. The models are (a) sequential and (b) parallel
models in the rectangle arrangement, (c) sequential and (d) parallel models in hexagonal arrangement.

the average distortion is the hexagonal arrange-
ment is lower than that in the rectangle arrange-
ment. This means that the rectangle arrangement
is not always optimum for the approximation of
the input space. For the standard deviation of
subdistortions, however, the hexagonal arrange-
ment rises from the rectangle arrangement, and
the dispersion of the hexagonal arrangement is
intensified as shown in Fig. 7.

Figure 8 shows the number of TM in the rect-
angle and hexagonal arrangements. The topol-
ogy preserving map is formed at the probability
of about90%, even if the parallel degree changes.

The average distortion in the rectangle and

hexagonal arrangements in changing the initial
value of the topological neighborhoods to10
from 5 in Fig. 9. In this case, the topology pre-
serving maps are formed at100%. Unlike in the
case of Fig. 6, the average distortion rises as a
whole, and the tendency of the average distortion
in the rectangle and hexagonal arrangements is
also different. It seems that neighboring effects
are strong and lead to excellent results for the for-
mation of the topology preserving maps, but they
bring on reverse effects for the average distortion.
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Figure 6: Average distortion of the rectangle and
hexagonal neighborhood arrangements. The results
are the averages of 1000 trials, randomly chosen
among 5000 data.

6 Conclusions

In this paper, we have presented the parallel self-
organizing models. In the parallel model, multi-
ple input vectors are given at each step and ref-
erence vectors are updated as the composition of
their vectors under the influence of all vectors.
Specifically, we have evaluated the ordering pro-
cess for each model, making use of the index of
twist. As a result, it is shown that Kohonen’s self-
organizing algorithm for the feature map can also
be performed in the parallel manners. Though
the adaptation process for one input and multi-
ple inputs at each step generally yields different
results in neural networks, it is useful that the
self-organizing algorithm produces almost same
results. For the future works, we will study the-
oretical considerations and practical applications
of the present models.
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