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Abstract: - A  research has been carried out finalized to the definition of a methodology useful for the 
diagnosis and prediction of the correct evolution state of physical systems. In this paper we present a related 
model and a specific network topology for the considered problem. In particular, the prediction procedure is 
based on a “Self Organizing Map”(SOM) and an “Error Back-Propagation”(EBP) networks combined to form 
a hierarchical architecture. The network system has been developed and tested using data furnished by Alenia 
and consisting in sensorial data (FBG, Fiber Bragg Grating) and multi-format descriptive data regarding 
evaluation (SB). The obtained results have shown that the developed methodology is a promising tool for the 
diagnosis activity. 
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1 Introduction 
The traditional monitoring models applied to the 
study of the correct evolution of physical systems 
are often based on prediction approaches in which, 
under the hypothesis of a correct functioning, on the 
basis of a set of measurements acquired on field, 
reference values are computed according to a 
descriptive mathematical model. These values are 
then compared with the real-time recalculated 
measurements in order to verify whether the 
difference between every corresponding values does 
not exceed a prefixed threshold; on the contrary, the 
system alerts the user for a potential malfunctioning. 
Then, a set of rules integrated in these models can 
derive some type of prediction for the system 
(expert systems) [6,7]. These models are very rigid 
and do not  easisly adapt themselves to the 
functioning variability of the systems under different 
and aleatory conditions.  Moreover, being critical 
the time in the initial data pre-processing phase, 
some measures could not be recalculated because of 
a possible system time out. Other diagnosis 
approaches need accurate models of systems and 
require a fixed number of diagnoses classes (model-
based) [6], decreasing the flexibility of the models 
themselves. In other cases, the expert’s knowledge is 
stored in a library of cases (case-based) [6,8], even 
if the search for the best matching case can be 
computational expensive. Also used is inductive 

learning that includes decision trees, statistical 
classifiers or neural networks [6]. 
In this paper, we propose a novel model for the 
realization of a valid standalone diagnosis 
methodology  which is also able to provide a final 
prediction about the state of the monitored system, 
or its components. On the basis of the received 
inputs and without requiring further elaboration, we 
define a structured artificial neural network 
architecture to describe the state of the system and to 
propose a final prediction. This model has been 
applied to study the life cycle prediction of 
aeronautical components demonstrating to be 
flexible, fast and reliable.  
 
 
2   System monitoring and prediction 
Monitoring a physical system, or its component 
objects, can be realised  according to a specific 
model that follows two phases: 

1. Pre-processing phase,dedicated to input 
data filtering and validation, necessary to 
eliminate eventual incongruence and to 
define a consistency control of the measures 
obtained from specific sensors. 

2. Classification and prediction phase, 
performed on the previous data also using 
historical-statistical data. 

We assume that the sensors belong to different 
categories and that we can identify correlations that 
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allow grouping into suitable clusters those sensors 
whose outputs mutually influence themselves. When 
this hypothesis is valid the first phase (pre-
processing) can be implemented as a set of networks 
each dedicated to a particular group of correlated 
sensors. The output of these networks defines the 
input to the next phase.  
A second network architectural paradigm has been 
considered to model a classification and prediction 
of different cases of the same problem instantiation 
by adopting a two level hierarchy of independent 
specialised networks (i.e. hierarchical neural 
network, HNN) for some type of prediction, the first 
one suitable to map the sensors sets, the second one 
capable to perform a final prediction on the basis of 
the output given by the previous net and other 
specific parameters [1,3]. 
The implementation of the global network by means 
of two independent network levels implies a rapid 
and efficient training of each individual level. The 
prediction phase mainly consists of two levels. The 
lower level (clustering level) is composed of a single 
network based on a SOM model, and the training is 
performed with the aim to cluster each input value 
into crisp classes, without using any information 
related to the object’s classification class which the 
input value belongs to. Each specific feature is the 
input to the clustering level. The higher level 
(prediction level) is composed of a single final 
classifier based on an EBP model. The architecture 
of the model is shown in Fig. 1. 
 
 

 
 

Fig. 1 Architecture of the model. 
 

In the following, a detailed description of each step 
is given: pre-processing and two-level HNN 
description. 
 
 
2.1   Input data pre-processing 
The pre-processing phase regards only the input data 
set relative to the measurements performed on the 
examined object using different sensors. Since on 
field measurements might be incongruent owing to 
some bad functioning, we have introduced a data 

validation process, based on mathematical models, 
to obtain a set of validated data, also congruent.  
In traditional diagnosis models, a main problem 
regards the duration of the validation and the 
reconcilement of  the revealed measures. In fact, the 
validation of each measure could require some time 
with the consequence that sometimes the measure 
might not be validated owing to a time out of the 
system, not allowable for real-time analysis. 
As a consequence the validation of the sensorial data 
needs to be improved as much as possible, and 
because of this a system of neural network has been 
studied for on-line validation. 
The pre-processing phase is composed of: 
1.  Elementary validation 
Initially a filtering process is applied on the acquired 
data in order to identify sensors temporarily or 
permanently out of service. During the filtering 
process some values of the input signals can be 
corrected or rejected dependently on the possibility 
to recover correct data. The values obtained for each 
sensor are normalised on a prefixed range (e.g. [-
1,1]); then the normalised data are processed in 
order to substitute those values that are out of range 
with the most probable value for that sensor in that 
time by extrapolating it over the previous 
measurements. 
2.  Measurements reconcilement 
The process of verification of the measurements 
congruence and reconcilement is performed using 
supervised neural networks (RNs), which are trained 
with the measurements acquired directly from the 
sensors and with the validate measurements: these 
last can be obtained according to a mathematical 
model derived from the knowledge of an expert. The 
number of neural networks to be trained corresponds 
to the number of correlated quantity groups. To each 
network a certain weight is associated so that in the 
case in which more networks calculate the same 
measure the reconciled data is obtained as a 
weighted average of the previous calculated values. 
The data reconcilement process allows individuating 
eventually incongruent measurements and, by 
recalculating the reliable values of the respective 
quantities, provides a set of measurements which are 
all each other congruent. The network is composed 
of the input and output layers and an additional 
hidden layer whose number of units can be found 
empirically. Even the choice of the number of the 
hidden layers can be done in the same way, based on 
observations regarding the activation of the specific 
layer. At the end of the training phase, the network 
can be reutilised to filter the input data acquired 
from the sensors. The output of this network is 
composed of a set of validated and congruent 
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variables which define, together with other 
parameters, a training set for the hierarchical 
networks system. 
 
 
2.2   System monitoring and prediction 
through HNN 
In order to properly train the HNN network, the set 
of stimuli (training set) should be chosen in such a 
way to be representative of all the classes that the 
network should recognize: more stimuli of a certain 
class are chosen for the training, more specialised 
will be the network to recognize the elements of that 
specific class and the number of excited neurons by 
such input will be greater. In particular, for the 
SOM, those parts of the network that during the 
training phase are tuned on the specific stimuli class 
are composed of a  number of neurons as higher as 
the number of elements of that class in the training 
set (i.e., they have a higher resolution). 
The training set is defined by a set of values, 
initially pre-processed, acquired on field and the use 
conditions of the examined object. 
Aim  of our study is then to design and implement a 
hierarchical neural network system able to work 
automatically in the context above mentioned. 
The network used in the first phase of classification 
is a Self-Organizing map for which  the steps of the 
training algorithm are the following [2]: 
For each input pattern 

1. the neurons of the network compute their 
respective value of the discriminating 
function; 

2. the neuron having the biggest value of such 
function wins the competition(the so called 
winner); 

3. the winner determines the spatial location of 
the neurons with a certain topologic 
neighbourhood; 

4. the winner apply a modification to his 
synaptic weights to increase his activation 
after the presentation of a similar successive 
input pattern. The weights of a generic 
neuron “n” in the range of the winner 
influence are also modified inversely 
proportional with the distance from the 
winner. 

The output of the clustering level is used to form the 
input pattern, together with known historical-
statistical information, for the prediction level, 
which refines the classification and gives a final 
response, that is a some type of prediction on the 
examined object. 

The network used is a feed-forward back-
propagation network. The dimension of the input 
stimuli corresponds to the number of different 
historical-statistical features taken into account, plus 
the SOM output for a total of NEBP.  
In Fig. 2 the architecture of the prediction level is 
shown. The input layer is composed of n  neurons, 
the output layer is composed of  neurons that 
correspond to the number of different classes of 
prediction to be identified. The network is used with 
no hidden layer; experimental tests have shown that 
hidden layers do not improve the performance nor  
the quality of the results. 

I
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Fig. 2 The architecture of the prediction level. 
 
The training algorithm is composed of the following 
steps: 
For each input vector  do iA

1. Get the input from the clustering level; 
2. Append historical –statistical data, 
3. Compute the output of the network 

propagating the input through weights; 
4. Compare the output with the target class 

 and evaluate the error ; ,i TC ( )j iAδ
5. Back-propagate the error and updates the 

weights up to the input layer; 
 
After training, the network can be used as classifier. 
The algorithm for this prediction phase consist of 
the following steps: 
For each input vector  to be classified do: iA

1. Get the input from the classification level; 
2. Append of the historical-statistical data; 
3. Compute the output of the network 

propagating the input; 
4. Take the most excited neuron i of the output 

level as the finale classification of   ; iA
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The output of this network is the final prediction for 
the processed object, in terms of which of the  
different output classes of prediction has been 
associated with the object examined. 

On

 
 
3   Materials and methods 
The implemented hierarchical neural network has 
been tested on data obtained from measurements 
furnished by Alenia. In this context, the developed 
algorithms and the networks can be easily integrated 
inside a single aircraft Life Cycle Monitoring 
(LCM) system, so that an interpretation of the data 
examined can be presented friendly and quickly also 
providing an evidence of the significant classes for 
the diagnosis and prediction. 
Regarding the examined data, three different test 
conditions have been chosen, maintaining a fixed 
temperature of 100°C ( Fig. 3): 
1. a load charge on two jacks A and B with 112% 

of the limit load 
2. a load charge on five jacks A, B, K, L, and M 

with 112% of the limit load 
3. a load charge of five jacks A, B, K, L, and M 

with 100% of the maximum load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3 Drawing of the component with jacks. 

 
The deformations of the material under solicitation 
were measured using strain gages, having one or 
three channels, with respect to the main direction. 
Each set of measures consisted of: 

1. the progressive load charge percentage with 
respect to the limit one 

2. the load charge on each jack 
3. the deformations of each strain gage for 

every channel 
4. the temperatures revealed from two 

thermocouples. 

The training of the networks for the measurement 
reconcilement has been performed using the  
Stuttgart Neural Network Simulator (SNNS) [5]. 
Each network can be created using the SNNS 
graphic interface so that different tests can be easily 
performed to individuate the most promising 
parameters for a rapid and correct learning of the 
network. Once the best parameters are individuated, 
we can write a program in “batchlanguage” 
language (something between Pascal and C) to 
perform the training in a batch way. At the end of 
the training phase, the network can be reutilised to 
filter the input data acquired from the sensors. The 
output of this network is composed of a set of 
validated and congruent variables which define 
together with other parameters a training set for the 
hierarchical networks system. 
The HNN architecture above described has been 
realized using SOM and EBP networks implemented 
under MATLABTM software package. In particular 
for the clustering level (SOM) four typologies of 
networks have been trained having 5×8, 10×10, 
20×20 e 20×30 neurons, respectively, distributed 
over a single layer and with hexagonal connection 
topology, for the first three, and a rectangular one, 
for the last. Each network has been implemented 
using a distant function based on both the 
connections and the real Euclidean distance among 
neurons; the results obtained in the two cases have 
not shown appreciable differences.  
The parameters to control are the following: the 
name of the variable that physically contains the 
network data structure; the type of network, in this 
case a SOM; the variation range of each element of 
the input array; the network dimension, defined by a 
couple of values : e.g. [10,10] points out a 10×10 
neurons network; the connection topology: 
hexagonal (HEXTOP), rectangular (GRIDTOP) or 
random (RANDTOP);  the distance function: based 
on connection arcs (LINKDIST), based on the 
effective Euclidean distance between neurons 
(DIST) or based on the Manhattan distance 
(MANDIST); the initial value of the learning factor 
for the ordering phase; the number of training cycles 
of the ordering phase; the initial value of the 
learning factor for the tuning phase; the minimum 
width value that neighbourhood influenced by the 
winner can assume. 
The input data for the SOM are arrays. In particular 
during the training a 2D input array (9x74000) is 
passed to the network; it represents a set of 74000 
patterns each of them is composed of a 9-dimension 
features array. The elements of each array 
correspond to 9 different reconciled values of 
sensor. 
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Fixed the weights of the arcs being input to a 
generic neuron “n”, ( ) ( )ppP nnn t

91
,.....,= , at time t, and 

established a stimulus ( )91 ,...,vv=v , the winner 
“w” is defined by the following function: 

( ) SOMVvw p →=Φ : ,  where 

∑∑ =∈=
=

9

1

9

1
max

i iniSOMni iwi vpvp  

where V is the stimuli space and SOM is the neurons 
space. The function  that  updates the 
weights of the winner and the neurons inside a 
prefixed neighbourhood has a gaussian-like 
behaviour in such a way to follow the descending  
behaviour of the modification, with the distance 
from the winner: 

( , )H n w

2

2

( )exp
2

( , ) n wH n w σ
 −

= − 
 

 

where “σ” controls the amplitude of the interval  
influenced by the winner. 
The weight variation of a generic neuron “n” in the 
range of the winner influence is defined by: 

( )( 1) ( , ) ( )nP i H n w v P iξ+ = ⋅ − n  

where “ξ ”  is a numeric constant that controls the 
entity of the modification during the training step of 
the network. 
The Neural Network Toolbox allows to load from 
the Matlab workspace values arrays as training set. 
After the network has been trained it can be 
exported in the Matlab workspace and then used to 
classify new input values. Then  an implemented 
module for the SOM simulation can be used to 
facilitate the use of the trained SOM. Since the 
response of the network to each single input is 
related to the neuron excited by the input itself, we 
have also implemented the possibility to display a 
3D plot of the network output for each stimulus. 
In the simulation phase, the input patterns are passed 
one by one to the previously trained SOM and in 
order to have a graphic display of the network 
output, a tool has been developed that shows which 
is the neuron more excited by the input, on a lattice 
with the same dimension of the network.  
The output of the clustering level, composed of a  
value pair identifying the neuron more excited, is 
used to form the input pattern, together with known 
historical-statistical information, for the prediction 
level implemented using the feed-forward network. 
As an example, considering a 10x10 SOM,  the 
result obtained are highlighted in Fig 4: 
regarding the three different test conditions 
examined: condition 1 is represented by red bullets, 
condition 2 by blue bullets and condition 3 by the 

yellow ones. Then, each of the conditions can be 
recognised and grouped as a specific cluster over the 
network. 
 
 
 

 
 

 
 

 
 
 

Fig. 4 Clusters of the different three conditions. 
 
The first step is to create the network object. A 
function is implemented to create a feed-forward 
network. It requires four inputs and returns the 
network object. The first input is a 10x2 matrix of 
minimum and maximum values for each of the 10 
elements of the input vector; the second input is an 
array containing the sizes of each layer. In 
particular, our network is composed of two layers, 
the first one by 15 neurons and the second one by 5 
neurons. The other two input are a cell array 
containing the names of the transfer functions to be 
used in each layer and the name of the training 
function to be used. The function for the network 
creation automatically initialises the weights. Once 
the network weights and biases have been 
initialised, the network is ready for training. 
The training process requires a set of examples, 
network inputs  and target outputs C .The  
input structure is a 10-dimension features array: 

iA ,i T iA

[ ]1 2 1 2 8, , , ,....,iA o o p p p=  
This input is composed of a first part that contains 
the output of the SOM ([ ]1 2,o o )  and of a remaining 
part that contains historical-statistical parameters 
([ ]1 2 8, ,....,p p p ) of the examined object. 

The  output structure is a 5-dimension features 
array: 

iO

[ ]1 2 3 4 5, , , ,iO o o o o o=  
Each element of the output array corresponds to a 
well defined reference class. In particular the 
maximum value element represents the class 
corresponding to the final prediction. During 
training the weights and biases of the network are 
iteratively adjusted to minimize the network 
performance function. Having an input , the iA
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weights from neuron i to neuron j (i.e. ) are 

updated by a value  computed as follows: 
jiw ,

, ( )i j iA∆

( )i jA ηδ∆ =

{ }output neurons

( ))
(

A T jO A
δ

∈

⋅ −  output 
 input 

iA

MSE i∑=

iA

, ( ) ( )i j i i iA O  A

where η  represents the learning rate and the 
(j iA )δ error is calculated as a function of the 

neurons output and the difference between the 
network output and the target class for the specific 
input . iA

'
,

'
,

( ( )) ( if  is an neuron
( ) ( ( )) ( ) ) if  is an neuron

j j
j i

j j k j kk

f net A C j
A f net A A w jδ

=  ⋅ ⋅ ∑
 
where  is the weighted sum of the ingoing 

signals to the neuron j for the input  and 

(j inet A

( ( ))j j i

)

'f net A
)(⋅f
 is the derivative of an activation 

function  used to compute the output. The 
default performance function for feed-forward 
networks is mean square error MSE (i.e. the average 
squared error between the network outputs a and the 
target outputs t) computed as follow: 

N

N

i=1

2δ  

The output of the training process is the updated 
network itself and all the information about the 
progress of training. The low number of inputs and 
the absence of intermediate neurons allow the 
network to be train-able in a very short time. 
After training, the network can be used as classifier. 
The function implemented to simulate a network 
takes the network input , and the network object 
net, and returns the network outputs that is the class 
which identifies the final output of our system, i.e. 
the life cycle prediction. 
 
 
4   Discussion and conclusions 
We have assessed that the use of neural networks, in 
particular SOM networks, with an increasing 
neurons number has shown a very interesting 
asymptotic behaviour. In fact, after the training, the 
nodes of the network with a low neuron number 
(2×8 or 10×10) are all tuned on a particular stimuli 
class (clustered). On the contrary, in neural networks 
with a higher neuron number we have noted more 
and more numerous clusters of nodes that have not 
be excited by any of the values configuration stored 
in the database of the input data. These neurons have 
been considered non-clustered, that is not distributed 
in clusters, since the stimuli to which they react 

were not present in the input database. In other 
words, it is possible that they belong to both a 
unique cluster and a variable number of clusters. 
Therefore, we can deduct that independently from 
the number of parameters used for the monitoring of 
the life cycle of an object, it is possible to find a 
SOM with a sufficiently high neurons number able 
to recognize all the possible states individuated by 
the parameter set. The use of SOM does not need 
to retrain the network when some change occurs 
in the problem domain (for instance, the 
addition of new diagnosis classes), showing that 
the developed methodology is a promising tool for 
the diagnosis activity. 
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