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Abstract:  A fuzzy adaptive control algorithm is presented in the paper. Its hallmarks are simplicity and global stability, i.e. 
boundedness of all the signals in the system. The control can be successfully applied to nonlinear plants that are predominantly of 
the first order. Thus, this approach covers quite broad class of plants that are often encountered in process industries. The proposed 
algorithm was tested on a simulated hydraulic plant. The test plant consisted of three water tanks. The performance of the proposed 
algorithm is compared to the performance of the robust adaptive control. 
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1   Introduction 
When designing control for poorly known and non-linear 
systems, there are many approaches to accomplish the 
aim. One possibility is to use classical adaptive 
controllers. The drawback of this approach is that 
estimated parameters change all the time and poor 
quality of control is achieved if the controlled system is 
highly nonlinear. If some sort of robust controller is 
used, the consequences are similar. It is also possible to 
apply nonlinear control and the results are usually quite 
good if the knowledge of system dynamics is sufficient. 
When this is not the case, probably the most 
straightforward solution is to use nonlinear adaptive 
control. Most of the “classical” nonlinear adaptive 
control algorithms [4] demand fairly good knowledge of 
mathematics from the designer and are thus avoided by 
practicing engineers. 
In recent years, a lot of effort has been put to neuro-
fuzzy identification of complex plants, which cannot be 
easily theoretically modelled. Based on neuro-fuzzy 
presentation of the plant model numerous neuro-fuzzy 
adaptive control approaches appeared in the literature [3, 
5, 6, 8]. 
The proposed algorithm (direct fuzzy model reference 
adaptive control – DFMRAC) tends to preserve the 
advantages of adaptive and nonlinear control while still 
assuring the robustness of the system. It greatly 
resembles the classical MRAC of the first-order plant. In 
fact, it can be obtained by fuzzification of control gains 
and the inclusion of e1-modification [2] into the adaptive 
law. The main advantage of the approach is the 
simplicity of the control algorithm. The latter is obtained 
by presuming that the plant is predominantly of the first 
order. Even though that this seems as an unrealistic 
assumption, quite broad class of nonlinear plants is 
included. In our opinion, such plants occur quite often in 
process industries. 

The paper is organised as follows. Section 2 presents 
DFMRAC algorithm, section 3 describes the plant which 
was used for simulation study. The results of the 
comparison between classical robust MRAC and 
DFMRAC are presented in Section 4. The conclusions 
are stated in Section 5. 
 
 
2   The DFMRAC algorithm 
Our main motivation was to find a simple solution for 
adaptive control of nonlinear systems. As mentioned 
before, DFMRAC can be viewed as an extension of 
MRAC to nonlinear plants. To simplify the algorithm 
and equations first order plants are supposed in the 
paper. Even when this assumption is violated good 
results are still obtained if the dominant part in system 
dynamics is of the first order. 
 
 
2.1 MRAC of LTI plants 
If the plant is linear time invariant system of the first 
order, it can be described by the transfer function 
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a control law 
 pqyfwu −=  (3) 
follows to achieve design objective. Classical solution to 
find the correct values for control parameters f and q is 
to estimate them by the following adaptive law: 
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where ε is tracking error, defined by 
 mp yy −=ε  (5) 
and γf and γg are arbitrary positive constants. 
Usually the system is not linear and linear approximation 
is only used to simplify the analysis. The consequence is 
that stability is obtained in small operation region where 
the process can be described sufficiently well by the 
linear model. 
 
 
2.2 DFMRAC of nonlinear plants 
The proposed fuzzy adaptive control system assumes the 
fuzzification of feedforward gain f and feedback gain q. 
The choice of fuzzification variables depends on the 
process behaviour and is similar problem to that of 
structural identification in case of Takagi-Sugeno (TS) 
model [7]. The fuzzified gains are described by means of 
fuzzy numbers f and q. 
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where k stands for the number of fuzzy rules. 
We assume that the process under investigation can be 
modelled by the TS fuzzy model of the form [7]: 
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where u and yp are input variables of the fuzzy system, 
py�  is the output variable, 

ai
A , 

bi
B  are fuzzy 

membership functions. The number of membership 
functions for the first and the second input variable 
defines the number of rules ba nnk ×= . The membership 
functions have to cover the whole operating area of the 
closed-loop system. In Eq. (7) it is assumed that u and yp 
are the so-called antecedent variables that give 
information about the current operating point of the 
system. In general, other variables can be used instead. 
Since the choice does not influence the proposed 
approach, they will be gathered in vector φ . The output 
of TS model is then given by the following equation 
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The degree of fulfilment )(0 φiβ  is obtained using T-
norm [7]. The degrees of fulfilment for the whole set of 
rules can be written as 
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Due to the Eq. (8) and Eq. (10) the plant can be 
modelled in fuzzy form as 
 uyy T
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where a and b stand for fuzzified parameters of the plant 
which have constant elements 
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After choosing a certain Lyapunov function and 
following similar procedure to that of deriving adaptive 
and control laws for MRAC of LTI systems a following 
control law is obtained 
 p

TT ywu )()( qβfβ −=  (13) 
It resembles classical control law (3). The direct 
extension of the classical adaptive law (4) for fuzzified 
gains f and q would have the following form 
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where bsgn is +1 if bi’s are positive and –1 if bi’s are 
negative. (Note: To achieve global stability all bi’s have 
to be of the same sign). 
It is not possible to prove the global stability of the 
adaptive law (14) combined with the control law (13). 
For this reason an extra term is added to the adaptive law 
and a new adaptive law is obtained 
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The appearance of the extra term in Eq. (15) also follows 
by the Lyapunov functions based design of the adaptive 
control. This extra term is equivalent to leakage or e1-
modification in robust adaptive control of LTI systems 
[2]. The global stability of the over-all system can be 
proven if adaptive law (15) is used [1]. 
 
 
2.3 Adding parasitic dynamics and disturbances 

to the plant model 
The nonlinear plant model of the plant (11) will be made 
even more complex by including parasitic dynamics and 
unmeasured disturbance 
 dupypuyy upy
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where p is a differential operator d/dt, while ∆u(p) and 
∆y(p) are stable linear operators in the time domain and d 
is disturbance. 
To robustly stabilise the plant (11) the proposed 
DFMRAC controller is used. It comprises of Eq. (14), 
modified Eq. (15) 

 
qββq

fββf

)diag(

)diag(

0sgn

0sgn

myb

mwb

qpq

ff

ενγεγ

ενγεγ

−=

−−=

�

�
 (16) 

and 
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where δ0 is a positive constant chosen by the designer. 
The following theorem can be proven [1]: 
The model reference adaptive control system, described 
by (14), (16), and (17), is globally stable, i.e. all the 
signals in the system are bounded and the tracking error 
e has the following properties: 
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• α0 is an arbitrary constant such that α0>am, 
• c are constants that depend on different system 

parameters. 
 
It should be noted that wf  and yf  denote the upper 
bounds of the fuzzy modelling error (see [1] for details). 
For the definition of extended Lpe norms (

0δ∞
⋅  and 

02δ
⋅ ) see [2]. 

 
 
3   Description of the simulation plant 
The proposed algorithm was tested on a simulation plant. 
The simulation test plant consisted of three water tanks. 
The schematic representation of the plant is given in 
Figure 1. The control objective was to maintain the 
water level in the third tank by changing the inflow into 
the first tank. 
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Fig. 1. Schematic representation of the plant 

 
The mass conservation equations for the three tanks are: 
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where φin is the volume inflow into the first tank, h1, h2 
and h3 are the water levels in three tanks, S1, S2 and S3 
are areas of the tanks cross-sections, and k1, k2 and k3 are 
coefficients of the valves. The parameters were chosen 
as follows: 
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The nominal value of inflow φin was set to 135 sm108 −−⋅ , 
resulting in steady-state values 0.48 m, 0.32 m, and 0.16 
m for h1, h2 and h3, respectively. In the following u and 
yp denote deviation of φ and h3, respectively, from the 
operating point. 
 
 
4   Description of the experiment and 
simulation results 
The proposed fuzzy model reference adaptive control 
algorithm was compared to classical model reference 
adaptive control via two experiments. Adaptive gains γf 
and γg and e1-modification constant ν0 were the same in 
both cases. A reference signal was chosen as a periodical 
piece-wise constant function which covered quite wide 
area around the operating point (±50% of the nominal 
value). There were 11 triangular fuzzy membership 
functions (fuzzification variable was y) used that were 
distributed evenly across the interval [-0.1, 0.1]. No prior 
knowledge of the estimated parameters was available to 
us, so the initial parameter estimates were 0 for all 
examples. 
The first simulation experiment assumes that the tanks 
are high enough so that they never fill up. Figs. 2 and 3 
show the results of the classical MRAC while Figs. 4 
and 5 depict the results of DFMRAC. By comparing 
responses in Figs. 2 and 4 one can observe that every 
change of reference signal results in the sudden increase 
of the tracking error ε (up to 0.01). This is due to the fact 
that zero tracking of the reference model with relative 
degree 1 is not possible if the plant has relative degree 3. 
Otherwise, much better results are achieved when using 
DFMRAC since the differences in system dynamics 
when changing operating point almost do not influence 
the responses of the system. Also, the oscillations in 
parameter estimates are smaller in the case of fuzzy 
adaptive law what can be noticed in Figs. 3 and 5. On 
the other hand, much longer period is needed that the 
estimates reach quasi-equilibrium if fuzzy adaptive law 
is used compared to the time needed if classical adaptive 
law is used. This is due to the larger number of estimated 
parameters. The classical adaptation could serve as 



initialisation of fuzzy parameters, i.e. all elements of 
vectors f and q could be set to the values obtained by 
classical adaptation of f and q. 
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Fig. 2. The classical MRAC with e1-modification – time 
plots of the reference signal and outputs of the plant and 
the reference model (upper figure), time plot of tracking 
error (middle figure), and time plot of the control signal 
(lower figure) 
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Fig. 3. The classical MRAC with e1-modification – time 
plots of feedforward (upper figure) and feedback (lower 
figure) control gains 
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Fig. 4. The DFMRAC – time plots of the reference 
signal and outputs of the plant and the reference model 
(upper figure), time plot of tracking error (middle 
figure), and time plot of the control signal (lower figure) 
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Fig. 5. The DFMRAC – time plots of feedforward (upper 
figure) and feedback (lower figure) control gains 
 
The second experiment was conducted on the model 
where the tanks were 0.6 m high. The responses are 
shown in Figs. 6 and 7 for the classical MRAC and 
DFMRAC, respectively. When the water level in a tank 
reaches 0.6 m the security mechanism stops the water 
inflow and prevents spilling. This assumption introduced 
discontinuity into the system. A consequence was that 
meeting of control requirements was not possible. It is 
true that water level never exceeds 0.6 m in the third 



tank, but it does in the first tank when the desired level 
in the third tank reaches some point. There exists no 
control algorithm that could zero the tracking error when 
the reference signal is too high. The classical adaptive 
law responded to that disturbance by increasing the 
control parameters while fuzzy adaptive law increased 
only one parameter. When the system left that operating 
point, the behaviour of the DFMRAC system was good 
while classical MRAC had to retune the parameters to 
reach the normal values. 
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Fig. 6. Response of the classical MRAC with e1-
modification (the case with finite height of tanks) 
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Fig. 7. Response of the DFMRAC (the case with finite 
height of tanks) 
 
 
5   Conclusion 
A fuzzy adaptive control algorithm was presented. It was 
compared to the classical MRAC on a simulation model 
of a three-tank plant. The advantage of the DFMRAC is 
that it is very simple to design it but it still offers the 
advantages of nonlinear and adaptive controllers. It was 
shown on the example that good results can be obtained 
if a plant of relative order 3 is treated as a first order 
plant. DFMRAC proves successful especially in the 
cases where disturbances are present in some region of 
the fuzzification space. In such cases only control 
parameters that belong to that region are affected by the 
disturbance. The drawback of the approach is long time 
of adaptation due to large number of estimated 
parameters. To speed it up, the classical adaptation can 
be used in the early phase. 
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