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Abstract: - In this paper we present a set of heuristic criteria devised to address the problems encountered in 
designing a fuzzy system to fit a set of input-output data. The objective is to obtain in a simple and fast manner a 
good starting model to undergo further refinements. The result is a simple algorithm with a similar performance 
than other techniques but with a low computational cost. 
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1   Introduction 
After Zadeh proposition of linguistic modeling in 
place of the quantitative one [1], fuzzy modeling has 
become one of the most relevant issues in qualitative 
analysis benefited from the linguistic capabilities of 
fuzzy logic. Since, several methods to obtain fuzzy 
models have appeared, most of them based in 
clustering techniques. Among the most popular ones 
we can mention Fuzzy C-means. 
     Many authors have focused their efforts to achieve 
models with a high precision in terms of error but 
have omitted the linguistic capabilities of fuzzy 
systems. For this reason most use linear equations as 
consequents of their rules (Takagi-Sugeno's model) 
instead of fuzzy quantities (Sugeno-Yasukawa's 
model). In general most methods fulfill the premise to 
diminish the error but unfortunately they are often 
excessively complex to be linguistically interpreted, 
which supposes to fail to take advantage of one of the 
main virtues of fuzzy systems. 
     Recall that the initial philosophy of fuzzy logic 
was to be the bridge between the human 
understanding and the machine processing. In this 
challenge, the ability of fuzzy models to express the 
behavior of real systems in a comprehensible manner 
acquires great importance. That’s why our efforts 
have been devoted to discuss a new approach to fuzzy 
modeling able to obtain in a simple manner a good 
starting model to undergo further refinements based 
on qualitative analysis. 
     In this paper we present a set of heuristic criteria 
devised to address model estimation. In particular, we 
are able to determine the number of fuzzy sets, place 
them in the universe of scope and propose a set of 
linguistic rules. The result is an algorithm with low 
computational cost but still similar performance than 
others.  

     Our goal is not to seek the lowest possible error 
but to obtain an acceptable precision while keeping 
the linguistic capabilities of the fuzzy model. In fact 
with this algorithm we will be able to choose the 
precision of the model and consequently its degree of 
interpretability. 
 
 
2   Outline of the method 
 
 
2.1 Optimal fuzzy curve 
Trying to adjust the fuzzy sets from the original data 
can be very arduous if many samples must be 
considered, so it is preferred to work with a 
simplified relation between the output variable and 
each possible input.  
     For this purpose many techniques are considered 
in the literature. The most popular among them are: 
linear regression, weighted average and Bézier 
curves. Among these alternatives we choose the 
weighted average because we are not interested in an 
extremely accurate result but in a solution with low 
computational cost showing the tendency adopted for 
the output variable when the input varies. So finally 
the proposed weighted function is the following one 
where the β parameter can be adjusted to diminish the 
square error as will be detailed later:  
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     In fact this function was proposed by Lin et al. in 
[2] and was called fuzzy curve because of its 
similarities with a fuzzy system with N rules, one per 
sample, where φik represents the antecedent set placed 
at xk and evaluated when x=xi. 
     Until now β has usually been adjusted empirically 
and in fact Lin et al. suggest a value equal to the 20% 
of the variable's range. But it is possible to work with 
an optimized fuzzy curve because the β of the fuzzy 
curve can be adjusted in such a way that this curve 
diminishes the square error defined as the difference 
between the value of the curve and the real value [3]. 
     At this point it is necessary to clarify the 
apparently incoherence of diminishing the error when 
we have bet for simple but not accurate results. The 
fact is that when working with weighted average 
functions anyone must answer the following 
question: how many neighbor samples should I 
average for each point? Certainly the precision of the 
resulting function is not its most valuable 
characteristic but obviously if the final result displays 
a good performance in terms of error no one would 
reject it. The method we propose will search a 
weighted function with a low square error but without 
assuring it because we will just find a statistic of it 
and thus this optimized function will have a certain 
tolerance. This tolerance will be the trade-off 
between the desired precision and the required 
computational cost. 
     First of all it’s obvious that we can not define the 
error from the sum of all the input samples because 
then the trivial solution for the parameter β would be 
equal to zero. Consequently we will have to divide 
the set of values in two groups: the samples that will 
be used to search the optimal parameter and the 
samples that will be used to evaluate the square error 
committed with this adjustment. Therefore we begin 
dividing the N samples in N1 samples used to 
calculate the fuzzy curve and N2=N-N1 samples used 
to test the error. In this way the values of the fuzzy 
curve in each test point will be computed using only 
the N1 values with the following equation: 
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     Once the fuzzy curve has been computed, the error 
in each one of the N2 test points is εi=yi-ŷi and the 
global square error is: 

∑=
= 2

1
2

2
1 N

i iεε  (4) 

     As being interested in the value of β which is 
necessary to diminish this error we come to calculate 
the equation: 
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     As it is observed the previous equation does not 
present a trivial solution reason why it must be solved 
by numerical methods. In order to accelerate the 
process, it would be interesting to know the limits 
between which the parameter β can be optimal one. 
     Therefore, if β is very small then ŷi≈yk for |xi-xk|min 
and only the closest train point to each test point 
affects the computation of the fuzzy curve. To 
determine this value we have to analyze from which 
value the effect of the second train point closest to 
each test point is insignificant. In this case if d1 is the 
distance from a test point to its closest train point and 
d2 is the distance from the same test point to the 
second train point closest to it, the most critical 
situation will be given for the test point having the 
two train points with the minimum value for d2-d1. 
     There is also a big value of β from which the error 
tends to become stabilized because then ŷi is similar 
to the mean of all the train points. In this case if d1 is 
the distance from a test point to its closest train point 
and d∞ is the farthest point to it, the most critical 
situation will result for the test point having the 
maximum value for d∞-d1.  
    Therefore and considering an accepted error η≈0, 
optimal β must be between [3]: 
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     Once we have the values between which the 
optimal β can be found, we can use a numerical 
method to determine it.  But by the fact of dividing 
the samples in two groups, the optimal value obtained 
by each division can not be the optimal one for the 
whole samples, reason why we can not obtain the 
optimal value but a statistic of it.  
     So in an iterative way we will create different 
partitions of the samples from which we will obtain, 
for each partition, an optimal value of βi with which 
we will compute, according to the theorem of the 
central limit, a confidence interval for this parameter 
as: 

n
st n 1,2/ −± αβ  (7) 

     We will stop the process after n iterations when 
the confidence interval allows us to consider the 
optimal value of β with a lower error than an 
established level. According to our objectives this 
level should not be very low because we do not seek 
very accurate results. Thus we will obtain fuzzy 
curves with an acceptable error but without 
increasing our method's computational cost. 



2.2 Piecewise linear segmentation 
Next step consists in obtaining a fuzzy logic 
representation of the optimal fuzzy curve with a 
satisfactory error. The fact of working with a one-
dimensional function instead of the original cloud of 
samples will simplify this step. For this purpose a 
piecewise linearization of the fuzzy curve is 
suggested because its mapping to the final fuzzy sets 
is very simple and any error can be reached based on 
the number of segments. In general the more 
segments the less error but the more linguistic 
complexity. In fact any linear segment can be 
obtained with a fuzzy system without error so the 
overall error will be due to the linearization of the 
curve but not to the fuzzy approximation. 
     So we suggest the following procedure which is 
exampled in Figure 1 to clarify it: 

 A straight line is plotted to join the first and the 
last point of the fuzzy curve. In fact these points 
will fix the boundaries of the universe of the 
scope and also the extreme fuzzy sets. 

 The farthest point of the fuzzy curve to the linear 
approximation is chosen to define the next 
linearization and thus the current maximum error 
is eliminated. So a straight line is plotted to join 
this point to the next point of the scope used to 
define the previous linear approximation while 
another straight line is plotted to join the selected 
point to the previous point of the scope used in the 
previous linear approximation. Fuzzy sets are 
modified to implement this linearization. 

 Process is repeated until a certain precision is 
achieved. 
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Fig.1 An example of linearization 

 
     The error will not always decrease monotonically 
but it can be easily concluded that if the fuzzy curve 
is defined with N points, the former method will 
remove the error in N-1 iterations at the most. 
 

2.3 Wang-Mendel’s modified algorithm 
After placing all the fuzzy sets and consequently 
fixing the maximum number of rules as the product 
of the number of sets of each variable, it's only 
necessary to define the linguistic rules computing the 
output set for each possible rule. 
     This problem is commonly solved searching the 
value that best fits from the set of samples. This 
method was proposed by Wang and Mendel [4]. For 
each rule they chose from a predefined bag of fuzzy 
sets the one with its core closest to the output value of 
the sample with the maximum implication level.  
     We propose a similar version of this algorithm 
which basically consists on using the implication 
value of each sample instead of its distance, like 
Wang and Mendel in [4], but without the predefined 
bag of output sets. For instance suppose that we must 
assign the output set of a rule plotted in Figure 2 from 
the samples given in Table 1. 
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Fig.2 Example of adjusting the output set 

 
Sample x y z o 
1 0.30 0.25 0.50 0.40 
2 0.80 0.50 0.75 0.80 
3 0.50 0.00 0.00 0.20 
4 0.50 0.25 0.75 0.50 

Table 1 Example of possible samples 
 

     If the product is used to compute the T-norms: 
     Sample 1 → µx(0.30)×µy(0.25)×µz(0.50)=0.20 
     Sample 2 → µx(0.80)×µy(0.50)×µz(0.75)=0.13 
     Sample 3 → µx(0.50)×µy(0.00)×µz(0.00)=0.00 
     Sample 4 → µx(0.50)×µy(0.25)×µz(0.75)=0.66 
     Then the output set will be centered at 0.50 for 
being the output value of the fourth sample which is 
the one with the highest implication value. 
     This solution, apart from avoiding the frequent 
need of using relative distances if the magnitudes of 
the variables are very different, can find out the rules 
that can be omitted for not having any sample 
referred to it. This would happen if the implication 
value of all the samples was zero. In this way the rule 
matrix can be simplified and at the end only the rules 
suited with the set of samples will be held. 
     For example suppose we have placed the input 
sets for a certain set of samples plotted in Figure 3 
and also the output sets. The input values of the 
different samples are also plotted over the rule matrix 
as a shadow. As there are two rules without any 
sample referred to it, they will be removed from the 
rule matrix, thus there will be only 40 rules instead of 
the maximum of 42. 
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Fig.3 A possible reduction of rules 

 
 
3   Examples 
In this section we deal with three illustrative 
examples in order to validate the proposed algorithm. 
All of them have been used previously in many 
articles and can be considered as a benchmark. 
 
3.1 Nonlinear static function 
Here we consider the following double-input single-
output function proposed in [5]: 
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plotted in Figure 4 from which 50 samples are given. 
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Fig.4 Nonlinear static function 

 
     The optimal β parameters for the fuzzy curves that 
we have computed from the previous data are 0.3477 
for x1 and 0.3779 for x2. In fact we do not assure the 
optimal value but a probabilistic distribution of it. For 
both variables this statistic has been computed with a 
level of confidence of 95% and a relative error of 
10%. The statistic for x1 is plotted in Figure 5. 
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Fig.5 Statistics for the β parameter 

     Once β is computed and thus the fuzzy curve is 
defined, we linearize it until a certain error is 
accomplished. This process for the variable x1 is 
shown in Figure 6 where a low error of only 1% has 
been demanded. 
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Fig.6 Linearization of a fuzzy curve 

 
     The previous low error is obviously desired but 
then a high number of segments are necessary and 
thus a high number of sets. Considering for example 
a precision of p=15% and the values for the three 
variables rounded to 0.1 we would obtain only the 
sets plotted in Figure 7. 
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Fig.7 Sets with a precision=15% 

      
     Finally the output set for each possible 
combination of inputs is computed with the proposed 
modified Wang-Mendel's algorithm. Considering the 
former sets, the final rules with our method are: 

if x1 is X1.2 and x2 is X1.1 then y is Y5.0 
if x1 is X1.2 and x2 is X5.0 then y is Y3.4 
if x1 is X2.5 and x2 is X1.1 then y is Y3.4 
if x1 is X2.5 and x2 is X5.0 then y is Y1.6 
if x1 is X4.8 and x2 is X1.1 then y is Y2.8 
if x1 is X4.8 and x2 is X5.0 then y is Y1.3 

where the subscripts of the fuzzy sets show their core. 
     In this case the root mean square error (RMSE) 
obtained is RMSE=0.644. 
     Obviously a better result can be achieved in terms 
of error if the precision parameter is reduced but with 
a higher number of sets and consequently with a 
poorer linguistic interpretability. The errors obtained 



in different simulations can be compared with other 
methods in Table 2 where, apart from the error, the 
number of sets, the number of rules and the type of 
the fuzzy model (Takagi-Sugeno or Sugeno-
Yasukawa) are given to compare their linguistic 
capabilities. 
 

Method Type Sets Rules RMSE
Sugeno [5] S-Y 12 in + 6 out 6 0.564 
Delgado [6] S-Y 10 in + 5 out 25 0.493 
Our method p=20% S-Y 4 in + 4 out 4 1.024 
Our method p=15% S-Y 5 in + 5 out 6 0.644 
Our method p=5% S-Y 9 in + 14 out 18 0.427 
Our method p=2% S-Y 12 in + 20 out 36 0.253 
Kim [7] T-S 6 in + 3 eqs. 3 0.281 

Table 2 Comparisons between alternatives 
 
 
3.2 Fuzzy system model 
With this case we will study the reproduction of the 
proposed method like in [5]. So we will consider 100 
samples from the fuzzy system given in Figure 8 
which was already used in [5] and whose transfer 
function is plotted in Figure 9. 
 

 
Fig.8 Original fuzzy system 

 

0

2

4

6

8

10

0
2

4
6

8
10
−8

−6

−4

−2

0

2

4

6

x2
x1  

Fig.9 Original transfer function 
 
     If we consider 10 equidistant samples per variable 
from 1 to 10, the resulting optimal β parameters are 
0.8529 for x1 and 0.9903 for x2. 

     Like in the previous example, we can consider 
different values to round the numbers and also the 
desired precision. In most cases the resulting model is 
very similar to the original one and in many cases is 
exactly the same if, for example, the round values are 
equal to one and the precision is less than 10%. 
     The only difference of our model in comparison 
with the original one is the fact that we only work 
with triangular sets and consequently we need six sets 
per variable placed at 1, 3, 4, 6, 7 and 10 instead of 
only three trapezoidal sets and thus the resulting rule 
matrix is the one given in Table 3. Obviously both 
fuzzy systems give exactly the same output values. 
 

x1 \ x2 1 3 4 6 7 10 
1 -8 -8 -6 -6 -2 -2 
3 -8 -8 -6 -6 -2 -2 
4 -4  -4 0     0  2   2 
6 -4  -4 0     0  2   2 
7 -2 -2 4 4 6 6 
10 -2 -2 4 4 6 6 

Table 3 Resulting model’s fuzzy rules 
 
     In fact it is very easy to work with trapezoidal sets 
with our method. Once the rule matrix with triangular 
sets is obtained we search, for each input set, if the 
output set assigned to its neighbor rule with the same 
input sets is the same, apart from the one belonging to 
the current variable. If this situation is repeated for all 
the rules with the same input values then both sets 
can be grouped into a trapezoidal one. If this 
algorithm is applied to the previous rule matrix then 
we obtain exactly the original fuzzy system. 
     If 100 random samples are considered we obtain a 
good performance in most runs as can be showed in 
Figure 10. 
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Fig.10 Random samples. Precision=5%. 

 
 



3.3 Mackey-Glass chaotic time series 
Here we will study the capabilities of the proposed 
method to model the Mackey-Glass chaotic time 
series defined with the following delay differential 
equation 9 under the premise that τ>17. 
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     Higher values of τ yield higher dimensional chaos. 
In our simulation we will consider τ=30 like in [4], 
where Wang and Mendel evaluated their method for 
adjusting fuzzy rules. To study our algorithm we have 
used 991 samples with a sampling period of 1.1 
seconds.  
     If we choose two input variables y(k-1) and y(k-2) 
and asking for a precision=0.5% we have obtained a 
model with 17 sets for y(k-1), 9 sets for y(k-2), 43 
sets for y(k) and 57 rules whose RMSE=0.0333.  
Results are plotted in Figure 11. 
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Fig.11 Prediction of chaotic series 

 
     We could use again this model to predict samples 
different from those used when constructing the 
model, achieving in this case a RMSE=0.0327. This 
situation is plotted in Figure 12. 
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Fig.12 Prediction of chaotic series – Test samples 
 
 
4   Conclusions 
      An algorithm that is able to give a first-approach 
of the fuzzy systems and that relates input-output 
pairs has been presented and discussed. Its main 

feature is that it is quite simple and extracts relevant 
linguistic information in a fast manner. 
     In spite of the surprising results that this and other 
identification algorithms can offer, the most 
important thing one must bear in mind when trying to 
identify a system, is the necessity of a good set of 
samples of all the variables because they will be at 
the end in charge of the result. 
     We are currently working on applications where 
linguistic interpretation is required such as  
econometrics, social analysis and scientific studies. 
Other applications related with on-line control 
processes are being considered. 
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