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Abstract: - This article presents a noticeable performances improvement of a neural classifier based on an RBF 
network. Based on the Mahalanobis distance, this new classifier increases relatively the recognition rate while 
decreasing remarkably the number of hidden layer neurons. We obtain thus a new very general RBF classifier, very 
simple, not requiring any adjustment parameter, and presenting an excellent ratio performances/neurons number. A 
comparative study of its performances is presented and illustrated by examples on artificial and real databases. 
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1   Introduction 
The radial basic functions neural net (RBF) has become, 
for these last years, a serious alternative to the traditional 
Multi-Layer Perceptron network (MLP) in the 
multidimensional approximation problems. RBF 
Network was employed since the Seventies under the 
name of potential functions and it is only later than [1] 
and [2] rediscovered this particular structure in the 
neuronal form. Since, this type of network profited from 
many theoretical studies such as [3], [4] and [5]. In 
pattern recognition, RBF network is very attractive 
because of its locality property which makes it possible 
to discriminate complex classes such as nonconvex ones. 
We consider in this article the Gaussian RBF classifier 
of which each m output sj is evaluated according to the 
following formula: 
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Where X=[x1… xn ]T∈R N  is a prototype to be classified, 
Nh represents the total number of hidden neurons. Each 
one of these nonlinear neurons is characterized by a 
center Cl∈RN and a covariance matrix ΣL. 
From a training set Strain={X p, ωp}, p=1…N made up of 
prototypes couples Xp and its membership class 
ωp∈{1…,m}, the supervised training problem of RBF 
classifier amounts determining his structure, i.e. the 
number of hidden neurons Nh and the different 
parameters intervening in the equation of outputs (1). 
Whereas these parameters can be calculated by different 
heuristics, the estimate of Nh is often delicate. For that, 
many methods were developed among which we can 
quote [6], [7] and [8]. That they basic or are very 
sophisticated, these methods generally require a very 

significant load of calculation without however 
guaranteeing significant performances. Moreover, they 
often require a certain number of parameters that must 
be fixed a priori and optimized for a particular problem. 
So these methods cannot be applied systematically and 
without particular precautions to any type of 
classification problem. The article [9] proposed a very 
simple algorithm which generates automatically a 
powerful RBF network without any optimization nor 
introduction of parameters fixed a priori. Indeed, the 
algorithm automatically selects the number of the hidden 
layer neurons. Although this network is characterized by 
its great simplicity, it presents a major limitation 
however owing to the fact that it requires a rather 
significant number of neurons in the hidden layer. This 
limitation makes it very heavy and requiring very 
significant training times for the very large databases. 
In this article we propose a solution to this problem by 
introducing the Mahalanobis distance. We thus obtain a 
new very general, very simple RBF network and 
presenting an excellent performances/neurons number 
ratio.  
The organization of the article is as follows: In section 2, 
we describe the principle of construction of new RBF 
network and we present the associated algorithm. Its 
operation is illustrated for an example on an artificial 
database. In section 3, we study its performances, as well 
on artificial problems as real ones.  
 
 
2   Algorithm 
In this section, we describe the principle of construction 
proposed as well as the algorithm allowing its 
implementation. We illustrate then his operation in a 
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problem of classification including two classes of which 
one is not convex. 
 
 
2.1 Principle 
The principle of the algorithm rests on [9]. According to 
the exponential nature of the functions ϕl(.) of each 
hidden neuron, the activation state of each one of them 
decrease quickly when the vector of entry X moves away 
from the neuron center. So only an area of the entry 
space centered in Cl will provide a significantly non null 
activation state. Contrary to [9], our algorithm regards 
this area as a hyperellipsoide centered in Cl.. Indeed, the 
use of the Mahalanobis distance makes it possible to take 
into account the statistical distribution of the prototypes 
around the centers Cl  and thus a better representation of 
classes shape. Our algorithm proposes to divide a 
nonconvex class into a set of hyperellipsoides called 
clusters. Each cluster corresponds to a hidden neuron 
and it is characterized thus by a center placing it in the 
entry space, a matrix of covariance indicating the 
privileged directions and a width calculating the 
extension of the hyperellipsoide. In the continuation, we 
will not make any more the distinction between a neuron 
and a cluster. 
 
 
2.2 Description 
Before describing the algorithm of construction of the 
RBF classifier, we will introduce some notations used 
thereafter. At the kth iteration, one defines C(k)

ij like the ith  
center (i=1… m(k)

j) characterizing the class Ωj. With each 
center a matrix with covariance is associated  Σ(k) 

ij and a 
width  L (k) 

ij. We note  H (k) 
ij the hyperellipsoide of center  

C (k) 
ij such as: 
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Each class is characterized by the area R(k)
j  defined as 

the union of all the hyperellipsoides H (k) 
ij (i=1… m(k)

j). 
We will also use the distance d(R(k)

j,X) between a point 
X∈Ωj  and its associated area R(k)

j. This one is defined as 
the Mahalanobis distance between X and the nearest 
center C(k)

ij of R(k)
j  : 

( ) ( ) ( ))()(min,
1)(

1

)(
)(

k
ij

k
ijXRd CXCX k

ij

T

mi

k
j k

j
−∑−

−

=
=

…

               (3) 

 
Step 0 (initialization): For k=0, one define m clusters 
whose centers correspond to the barycentres of different 
classes Ωj (Nj  is the element number of Ωj ) : 
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Step 1 (adjustment of the widths): The width L(k)
ij 

relating to the center C(k)
ij  is defined like the half 

Mahalanobis distance between this center and the nearest 
center of another class : 
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Step 2 (search for an orphan point): We seek a point 
Xi∈Strain  not belonging to its associated area R(k)

ωi  and 
most distant from this one: 
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If such a point does not exist, go to the step 5. 
 
Step 3 (creation of a new center): Point Xi found at step 2 
becomes a new center composing the class Ωωi  : 
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Step 4 (Reorganization of the centers): The K-means 
clustering algorithm [17] is applied to the points of Strain 
pertaining to the class Ωωi  in order to distribute as well 
as possible the m(k)

j  centers. Calculate the new 
covariance matrices: 
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Do k=k+1 and go to the step 1. 
 
Step 5 (determination of the weights): The weights 
matrix W* which minimizes an error function, here 
selected as the sum square errors of classification, is 
given by: 

1* T TW H H H T
−
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where H and T are the matrices respectively gathering 
the activation function stats and the target outputs. These 
last are fixed at 1 when they correspond to the class of 
the point and 0 elsewhere. 
 
 
2.3 Discussion 
The initialization of the algorithm (step 0) could have 
proceeded by the random placement of a number of 
given centers. This technique is very current in the 
definition of an RBF network. The fact of choosing the 
initial centers as barycentres of the points Xp makes it 
possible to avoid this unforeseeable character and 
provides moreover the number of these centers. Thus, 
the result of the algorithm depends only on the 
composition of the training data. In certain cases where 
the classes are nonconvex, it may be that the barycentre 
of a class is inside another class. This situation is not 
prejudicial for the algorithm since this center will be 
moved during following iterations. The covariance 



matrix corresponding to each center is obtained from the 
associated training data. We will further see that other 
definitions of this matrix can give different results. In 
step 1, L(k)

ij  is defined relatively to the minimal distance 
between the center C(k)

ij  and centers of another class. 
This means that a partial covering between the clusters 
of the same class is authorized. From a practical point of 
view, that makes it possible to optimize the space 
occupation of the attributes by the various zones of 
receptivity and thus to reduce the number of clusters 
necessary to compose each class. The elliptic volume 
covered by each cluster is maximum without 
encroaching on neighboring classes. In step 2, the fact of 
choosing the furthest point from the region R(k)

j  makes it 
possible to improve the effectiveness of the algorithm of 
K-means clustering used at step 4. It should be noted that 
this one relates only to the centers constituting the same 
class since the other centers did not change a position. It 
guarantees moreover a fast development of this area. In 
the network training (step 5), the target outputs are fixed 
arbitrarily at 1 when they correspond to the class of the 
point and 0 elsewhere. The motivation of this practice is 
artificially to create a brutal fall of the membership 
degree at the geometrical border of the class. 
After k iterations, all the points of Strain belong to a 
cluster, the algorithm generated m+k clusters defining as 
many subclasses. The RBF network thus built comprises 
then Nh=m+k hidden neurons. We can note that the 
algorithm converges necessarily. Indeed, in the "worst 
case" where none the classes is separable, there will be 
creation of a cluster for each point of Strain. 
 
 
2.4  Illustration of operation  
We will illustrate the significant phases of the algorithm 
on a classification problem of two concentric classes 
from the databases of "ELENA" project [10] [11]. This 
base makes it possible to determine the capacity of a 
classifier to separate two classes not overlapping but of 
which one is included in the second. 

 
Fig. 1a. Initialization of the algorithm. 

 
Fig. 1b. 1st iteration of the algorithm. 
 

 
Fig. 1c. 2nd iteration of the algorithm. 
 

 
 
Fig. 1d. Result of classification of the algorithm. 
 
The RBF network comprises 2 inputs and 2 outputs. The 
figure 1a shows the 2 initial centers {C1,C2} obtained 
following step 0. We can see that the two centers are 
almost confused. Each cluster induced is delimited by an 
ellipse of the width calculated at step 1. Obviously, the 
cluster of center C2 is not sufficient to entirely represent 
the class Ω2. This one thus will be subdivided in several 
subclasses. With the first iteration of the algorithm, the 



point noted Xi  on the figure 1b is the furthest from the 
center C2 and is out of the corresponding cluster. The 
addition of a new center compared to this point led, after 
application of the K-means, to the new distribution 
{C1,C2,C3} illustrated by the figure 1b. The point Xj is 
now the furthest from the center C3 on this figure. After 
application of the K-means on this new configuration 
one leads to the figure 1c. After 4 iterations, the 2 classes 
are discriminated perfectly and the neuronal classifier 
comprises a total of 5 neurons (see figure 1d). After 
having determined the number of centers necessary and 
their positions, the weights of the network are calculated 
according to equation of step 5.  
The algorithm thus manages to separate the two classes 
with only 5 neurons against 108 neurons for the old 
algorithm using the Euclidean distance and with a 
slightly higher rate of recognition: 98% against 97.75% 
for the old RBF. 
 
 
3   Results 
The object of this section is to evaluate the performances 
of the RBF classifier built by the algorithm presented in 
section 2. For that, we applied the classifier to various 
problems of classification comprising a variable number 
of attributes and classes and bearing on synthetic data as 
well as resulting from the real world. 
 
 
3.1 Benchmarks 
The benchmarks carried out here are studied in detail in 
ELENA project [10]. For each problem of classification, 
we have the results concerning the RBF classifier 
generated by the algorithm proposed as well as the 
performances of certain classifiers studied in [11]. It is 
about the classifier of the "k-nearest neighbor" (kNN) 
[12] who gives the best approximation of the Bayes 
recognition error and the of the Multi-Layer Perceptrons 
classifier (MLP) very widespread in the pattern 
recognition per connexionnist model [13]. The Learning 
Vector Quantization classifier (LVQ) proposed by 
Kohonen is a simple adaptive method of vector 
quantization. For other types of neural classifiers, see 
[11] and the included references. The RBFE classifier 
acts of that proposed in [9] using the euclidean distance.  
For each classifier, we calculate the average error of 
recognition (in %) on the test set obtained on 5 different 
experiments with the method of the "hold out" for 
counting the classification errors. The experimental 
protocol, which respects that used in ELENA project, 
consists in learning the classifier on half of the data then 
testing its performances on the second half of the base.  
The first database is created artificially to highlight 
certain properties or gaps of the tested classifiers. The 

objective of the "Clouds" problem is to study the 
influence of two interlaced classes with nonlinear 
borders. The three last databases result from real 
problems. The "Phoneme" problem relates to the speech 
recognition studied in European project "ROARS project 
SPIRIT" [14]. The principal difficulty of this problem is 
great dissymmetry in the number of authorities of each 
classes. We will not present the "Iris" data very known 
in the pattern recognition [15]. To finish, the data of the 
"Texture" file relates to the recognition of 11 natural 
micro-textures such as grass, sand, paper or certain 
textiles [16]. Various information concerning the 
statistics and the analysis in principal components of 
these various data files can be found in [10] and the 
references included. 
The figure 2 presents results on these various problems. 
The performances of the RBF classifier are slightly 
lower than the other classifiers for this first problem. 
This is explained by the significant interlacing of the two 
classes. The algorithm generates a neurons number close 
to the points number of training data and the capacities 
of generalization on the test set are thus very bad.  
The error rate of our classifier RBF is generally weakest 
for each of the last three problems. This is checked 
whatever the number of classes to be distinguished and 
the quantity of available data for the training. 
 

 
 
Fig. 2. Classification results on four different bases. 
 
 
3.2 Study according to the neurons number 
The object of this study is to show excel it 
performances/nombre report/ratio of neurons which our 
new classifier has. Not having the number of neurons of 
network MLP, this study is limited to only networks 
RBF of the preceding section. 
Table 1 presents a comparison between the old RBF and 
the new one. We can see on this table the "compact" 
quality of our new classifier who gives comparable error 



rates or even lower while minimizing the hidden neurons 
number Nh. So, training times are much less significant. 
For the "Textures" database for example, the error rate is 
divided by 4, while the number of neurons is divided by 
39. It was necessary less than two minutes to training our 
classifier and more than one hour for the old one. 
Times of training are given here for an execution of the 
algorithm under MATLAB on a PC AMD Athlon XP 
1800+. 
 
Database Classifier Error(%) Nh Learning time(s)

Old classifier 13,60 162 60 Clouds 
This classifier 13,25 72 30 
Old classifier 10,90 227 100 Phoneme 
This classifier 10,43 59 24 
Old classifier 2,90 24 0,5 Iris 
This classifier 1,94 3 0,1 
Old classifier 1,73 858 3900 Texture 
This classifier 0,41 22 100 

 
Table. 1. Comparison performances, neurons number 
and training times of the two RBF classifiers. 
 
 
3.3  The choice of the covariance matrix 
One of the limits of this classifier is the estimate of the 
covariance matrix. The larger the size of the clusters is 
and the better is the estimate of this matrix. So the 
calculation of this matrix can sometimes reduce the rates 
of recognition. To cure this problem, other calculations 
of this matrix can be proposed to take into account more 
prototypes during the estimate of this matrix. Table 2 
gives examples of calculation, errors and the 
corresponding number of neurons. One can see on this 
table that a different choice of the covariance matrix that 
proposed in section 2 can increase or decrease the rate 
error but the number of hidden neurons can only 
increase. But this number remains always largely lower 
than the number of neurons proposed by the old RBF. 
 
 

Covariance matrix Error (%) Nh 
Σ=cov(C)             (a) 0,14 247 
Σ=cov(Ji)             (b) 0,27 38 
Σ=cov(JCi)          (c) 0,41 22 
Σ=cov(J)             (d) 0,32 283 
 
Table 2. Error rate of the base Textures according to the 
choice of the matrix of covariance: (a) covariance of the 
centers, (b) covariance of the data of each class (c) 
covariance of the data of each center (d) covariance of 
the total database. 
 
 

3.4 Application in code identification 
The goal of our application is to detect and identify 
reliably different buried metallic codes with a smart eddy 
current sensor. Based on the principle of the induction 
balance, our detector measures the magnetic fields 
modifications emitted by a coil. These modifications are 
due to the presence of the metal codes buried on the top 
of the drains. A code is built from a succession of 
different metal pieces separated by empty spaces. Thus 
the identification of the codes allows the identification 
and the localization of the pipes (like water, gas,…) [18]. 
Several material improvements were carried out on our 
detector [21], but the identification of the codes always 
poses problems because of the similarity between the 
codes, the non-linearity of the answer according to the 
depth and the choice of a suitable coding of the signals 
[22]. To solve these problems, various methods of 
classifications were proposed. The first methods was 
based one the fuzzy logic theory, the Kohonen SOM, 
and an RBF classifier. The methods based on the fuzzy 
logic theory are the well-known Fuzzy Pattern Matching 
(FPM) [19] and the distributed rules (DR.) [20] 
developed among others by Ishibuchi. Among all these 
methods it is the classifier RBFE (Euclidean RBF) who 
gives the best results. But, these results remain 
insufficient for the great depths. It is for that we 
developed this new classifier to try to decrease rate 
errors and neurons number for a future integration of the 
classifier on programmable microchips.  
A comparison is made between these different methods 
and the new RBF classifier. 

 
 This classifier RBFE SOM FPM DR 
Error (%) 5.0 6.2 11.3 8.3 7.1 

Nh 68 135 - - - 
 
Table 3. Results of code misclassification for the 5 
pattern recognition methods implemented. 
 
For a burying depth up to 80 cm, we obtain the results 
given in the table 3. We can notice that the result of the 
new RBF classifier is better than the others, and always 
with less number of hidden neurones. 
 
 
4   Conclusion 
We proposed a noticeable performances improvement of 
a neural classifier based an RBF network. The new 
classifier is very general and simple. It generates 
automatically a powerful RBF network without any 
introduction of parameters fixed a priori. 
The number of hidden neurons is very optimized what 
will allow its use for the very large databases. Indeed, 



the new classifier obtains excellent recognition results 
for a variety of different databases. 
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