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Abstract: - In order to be able to control a system by means of an automatically adaptable controller, we have to adjust 
its parameters to the changes taking place in the system. For this purpose a number of methods have been developed.  
A frequently used identification method is the least-squares method, but we are limited by the choice of the suitable 
sampling period. The neural network seems to be a desirable solution because of  its  adaptation characteristics.  
Among the most used learning algorithms belong the Levenberg- Marquardt and back-propagation.  
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1  Introduction 
Process identification is of great significance in adaptive 
control. Properly identified parameters of a dynamic 
system make it possible to design a suitable controller. 
The most frequently used method is the least squares 
method. Its advantage is the fast determination of the 
sought-for parameters, however, we are limited by the 
choice of the suitable sampling period T. Its limit value, 
when controlling a real system via A/D and D/A 
converters, is approximately a tenth of the dominant time 
constant of the process. Making sampling period even 
shorter leads to unrealistic estimates of the state. If the 
parameters identified in this way were used for 
calculating the settings of the adaptive controller this 
would result in a worse controlling action than when 
employing a traditional PID controller (or discrete PID 
with derivative component filtering), in particular when 
the controlling action is to rectify a fault. Such situations 
require that different methods of continuous 
identification are applied. One of the possible 
approaches is employing neural networks [1].  
 
2  Neural Approach 
A formal neuron has n real inputs x1,… ,xn. The inputs are 
evaluated using corresponding real synaptic weights 
w1,… ,wn defining their „ throughput“ . A neuron 
transforms input data into output data based on the 
transfer function. Individual neurons can be arranged to 
form a neural network –  the neurons are interconnected 
so that a neuron output is an input to multiple neurons. 
The number of neurons and their interconnections in the 
network determine the neural network architecture. The 
so-called feed-forward networks are used in control 
technology to implement controllers or, for example,    

to identify process parameters. In a linear model of a 
process it seems beneficial to use only a single neuron 
with a linear transfer function for identification. 
     The advantageous and distinguishing feature of 
neural networks is their ability to learn. The network in 
the adaptive mode abstracts and generalizes the function 
character in the process of learning from training 
patterns. The learning algorithm is an optimization 
method capable of finding weight coefficients and 
thresholds for a given neural network and a training set. 
There are a number of learning algorithms. Those that 
are used most frequently are the back-propagation 
algorithm and the Marquardt-Levenberg algorithm. 
 
2.1  Back-propagation Algorithm (BP) 
This algorithm is based on minimizing the error of the 
neural network output compared to the required output. 
The required function is specified by the training set         
(a sequence of input / required network output pairs). 
The error of network E relative  to the training set is 
defined as the sum of the partial errors of network Ek 
relative to the individual training patterns and depends 
on network configuration w  
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The partial error of network Ek relative to the k-training 
pattern is proportional to the product of the squares of 
the deviations of the actual values of network yj outputs 
for the input of k-training pattern xk from the 
corresponding required values of outputs for pattern dj  
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where Y  is the set of output neurons 
 



The adaptation of weights (in time t = 0 the 
configuration weights w(0) are set randomly close to 
zero) takes place in discreet time steps corresponding to 
the training cycles. The new configuration in time t > 0 
is calculated as follows 
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where  0 < α < 1 is the speed of learning  [2], [5]. 
 
    The speed of training is dependent on the set constant 
α . If a low value is set, the network weights react very 
slowly. On the contrary, high values cause divergence - 
the algorithm fails. Therefore the parameter α   is set 
experimentally. 
     If the neural network is to be used as a model in an 
adaptive system, for real industrial process control, the 
divergence must be prevented. In order to avoid it, the 
algorithm is often modified, the parameter α  can be 
adjusted in the progress of training in dependence on the 
network error E.  The neural network is submitted the 
training set patterns. The instantaneous error E(w(k)), 

)())(( kwkwE ∂∂ , is determined, and a new weight 
configuration w(k+1), then E(w(k+1)) are calculated. 
Now, we have to find out if the network training error 
was reduced. If  
 ))(())1(( kwEkwE <+  ( 4 ) 
is fulfilled, the new configuration of network weights is 
accepted, the value of parameter α is increased. 
Otherwise constant α is decreased and configuration 
w(k+1) is recalculated. 
     Algorithm can be enhanced including momentum β . 
This parameter can be adapted in the same way as the 
training speed α .  
 
2.2  Levenberg-Marquardt Algorithm (LM) 
This algorithm is a variant of the Gauss-Newton 
optimization method. As in back-propagation we look 
for the minimum of the function 
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where p is a number of available patterns, ε is a error 
vector (difference between the actual and the desired 
value of the network output for the individual patterns). 
By introducing the Jacobi’s matrix 
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it is possible to estimate the error development using the 
Taylor polynomial of the 1st degree 
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By minimizing using w(k+1) (where w is the weights 
vector) and introducing parameter λ an equation is 
obtained for calculating the network weights 
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For a large value of parameter λ the algorithm 
approaches the gradient method, for small λ it becomes 
the Newton method.  
    Parameter λ is modified based on the development of 
error function E. Should the step cause a reduction of E, 
we accept it. Otherwise we change parameter λ, reset the 
original value and recalculate w(k+1) [3]. 
 
2.3  Comparison of Methods 
In the simple gradient method we proceed in the 
direction of tangent vector wE ∂∂  downwards by a α . For 
a sufficiently small  α  we obtain configuration w(k)  for 
which the error function is smaller than for the original 
configuration w(k-1). We therefore proceed by layers 
E = const.  towards  the minimum. Obviously the 
algorithm converges towards the optimum slowly but the 
greatest disadvantage seems to be the possibility of 
stopping at a stationary  point –  at the location of local 
minimum E.  The network error is not reduced any 
longer and the optimum configuration w* is not 
obtained. There are modifications available for making 
the back-propagation algorithm more robust (by 
introducing momentum, learning constant modifications, 
etc.).  
Levenberg-Marquardt algorithm places a quadratic 
function around the point and proceeds towards its 
minimum. The sought - for optimum w* can be 
established with great accuracy using fewer steps, 
although at the expense of increased calculation 
complexity. In one step a much greater number of 
calculation operations need to be made compared to a 
single step in back-propagation. 

 

 
Fig. 1   Method of establishing optimum  

w* using the LM and BP methods 

 
 
 
 
 



3  ARX Regression Model 
In most cases (and in adaptive control in particular) the 
parameters that are to be determined are those of a linear 
regression model ARX which models the system output 
based on the equation 
 ∑∑
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or 
 uzByzA )()( 11 −− =  ( 10 ) 
where u –  excitation signal, y –  system output.  
 
The equation can also be expressed in the form of 
vectors 
 )1()()( −= kφkΘky T          ( 11 ) 
where ],...,,,,...,,[ 2121 mn bbbaaaΘ=  is the vector of the 
parameters of the investigated model and φ(k-1) is the 
vector of the data [4]. 
 
4  Simulation Experiment  
The individual algorithms were applied in the MATLAB 
software environment. The learning process has been 
tested on several transfer functions.  
 
Examples 
• identification of the transfer function  
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         which is expressed in the discreet area for 
         sampling period T = 0.3 s  as 
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         After  the   identification   process  is  finished   the 
         transfer   function can be drawn up. Figure 3 shows 
         the system  and model response  for  input  u(t) = 1, 
         figures 4,5 curves of identified parameters in time. 
 
• identification of  the  transfer  function  (formula in 

         discreet area, sampling period T = 0.3 s) 
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         change    of    system    happened  in   time  t = 50 s 
         using  block  switch  to 
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         Identification   block   scheme   is   in  the  figure 2.  
         Figures 6,7  show curves  of  identified  parameters 
         in time. 
  
 
 
 

 

 
Fig. 2  Scheme of  on-line identification of  

the system 

     During the experiment, the random signal with 
Gaussian distribution has been used as an input to the 
system. A mean value equals to zero and a variance 
equals to five (a standard normal distribution). 
     The standard learning algorithm has been extended 
by the batch learning method. The input signal u(k) and 
output system response  
 xky TΘ=)(                 ( 16 ) 
(where ],,,[ 2121 aabbΘT =  is the vector of the parameters 
model) are sampled in sampling period  T = 0.3 s. A 
vector 
 [ ])2(),1(),2(),1( −−−−−−= kykykukuxT   ( 17 ) 

is used as a net input during the learning process and 
according to the current system response y(k) we 
minimize function performance (1). A training set 
consists of fifteen training pairs xT, d. Until the training 
set is not full, the training patterns have been added to 
the training set. It is necessary to eliminate out-of-date 
training patterns and add current data to ensure 
continuous identification. 

    The initial parameter set-up for LM algorithm is: 
λ = 0.001 ;  for BP than α = 0.1 and momentum β  = 0.8. 

 
 
 
 
 
 
 



 
Fig. 3  Identification using the LM and BP 

methods 

 
Fig. 4  Curve of parameters  (system GA) 

 

 
Fig. 5  Curve of parameters  (system GA) 

 
 

The identification process begins in time t = 4.8 s. Data 
have been added to the training set in time period                
t = 0 to 4.8 s. Above mentioned figures present that 
back-propagation algorithm converges towards the 
optimum parameters slowly. On the other hand, 
Levenberg-Marquardt gives better results because 
coefficients have been gained almost immediately. 
Because of its speed and accuracy, only algorithm LM 
was used in further experiments. 
 

 
Fig. 6  Curve of parameters a1, a2            

(LM, system G1 → G2 ) 

 

Fig. 7  Curve of parameters b1, b2           
(LM, system G1 → G2 ) 
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5  Physical model identification 
For verification of algorithms on physical models 
communication between the MATLAB/Simulink 
environment and the programmable logic controller 
B&R (series 2005)  was applied  (using the PVI 
interface). PLC acts as an input/output card only. In 
synchronous instants the PVI client can read or record 
into internal variables of PLC mapped at its inputs and      
outputs.  
      When working with real systems we can measure 
data with only limited accuracy. It is due to the signal 
transition in A/D, D/A converters with the step function 
of parameters. The calculation accuracy is therefore not 
in the order of 10 or more valid digits, but a maximum of 
4 valid digits.  Consequently, the identified parameters 
are not stabilized, but oscillate, which is undesirable. 
One of the possible approaches is stopping the 
quantification in the instant when the prediction model 
error drops below the set limit.   
     The system is initiated by signal u1 (rectangular  
pulses –  amplitude 2,-1; period 5 s), The output of the 
process is measured in the sampling period 0.1 s. The 
batch contains 40  patterns. Initial values were λ = 0.001. 
     Fig.3 shows the curve of the physical model response 
(approximate value of time constants T1 = 10 s, T2 = 1 s) 
and the neural model to the initiation signal.  
 

 
Fig. 8  Physical model identification 

 
It was proven by experiments that an single neuron can 
be used even in noise-affected systems.  
 
 
6  Conclusion 
Neural networks are a suitable tool for process 
identification. They facilitate determining the required 
parameters in situations where the least squares method 
fails. This happens when the short sampling period is 

required (mainly for quick disturbance cancellation). 
Presented figures show that Levenberg-Marquardt 
algorithm can reach optimum parameters of system 
transfer function with a great accuracy when using fewer 
steps. The disadvantage is an increased calculation 
complexity. It was proved that when an single neuron is 
used an industrial PLC can identify a noise-affected 
linear model with sufficient  accuracy. 
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