
Competitive Strategies for Multilayer Perceptrons' Training using
Backpropagation and Parallel Processing

R. L. S. ALVES, A. C. M. L. ALBUQUERQUE, J. D. MELO AND A. D. DÓRIA NETO
Departamento de Engenharia de Computação e Automação

Universidade Federal do RN - Campus Universitário s/n - 59072-970 - Natal - RN - BRAZIL

Abstract : - We present in this article a new approach for multilayer perceptrons’ training. It is based on the
utilization of parallelism and in the exploration of the inherent competition of this computation form. Multiple
copies of the network are trained at the same time, and competitive strategies are used to speed up the
convergence of the backpropagation algorithm. Each copy is initialized with a different matrix of synaptic gains,
thus allowing a larger exploration of the parameters space and a larger possibility to avoid the local minimums
on the error surface. The parallel tasks cooperate with each other to get benefit from the best results. The
presented results are sharply superior compared to those obtained with the parallel algorithms published in the
literature.

Key-words: - Backpropagation, Parallel, competitive strategies

1 Introduction

It is already well established in the literature the
great potential application of the multilayer
perceptrons - MLP, as a standard classifier, in the
approximation of functions, as well as a universal
interpolator. As the knowledge of this kind of
network is stored in their synaptic gains, their
applicability to complex problems demands topologies
more and more dense, either in the number of hidden
layers, or in the number of neurons per layer. That
increase in the complexity results in processes with
very slow training from the computational point of
view, mainly when one uses the backpropagation
algorithm [1-3]. A good analysis of the involved
problems and of the different proposed solutions are
found in [4].

Among those more appropriated tools, we can cite
the use of parallel processing techniques. There are
several used approaches, among them we can stress
the exploration of the parallelism of decomposition of
the training standards set [5-8]. In this work, this
approach will be used as a comparison parameter
and a new algorithm will be introduced. The sought
goal is to seize not only the possibilities of the
parallelism of the sequential algorithm, but also to
discover other possibilities based on the exploration

of the dispute/independence aspects inherent to the
parallelism. Taking into account the complex
problems of practical application, we analyze, in a
quantitatively and qualitatively way, the performance
of the proposed algorithm.

2 Backpropagation parallel
algorithm based on the decomposition
of the training set

Consider a MLP completely connected,

constituted of L layers, with , 1, ,lk l L= …

neurons in each one of them. The connections

between neurons of the layers 1 e l lk k − are
pondered by synaptic gains

1, 1, , e 1, ,ji l lj k i kω −= =… …
. The training

consists of the adjustment of the synaptic gains so as
to minimize the overall mean square error defined by:

2
()

1 1

1
() ()

2

P L
p

N k
p L

med j j
p jP

n d y n
N

ε
= =

 = − ∑∑ (1)

where , 1, ,p
Pd p N= … represents the vector of

wished outputs for the standard input
px and

() pLy

represents the output produced by the network for
the same standard. Figure 1 illustrates the algorithm:

Initialization:
Relative data to the network: number of layers, number of
neurons per layer, set of training standards (wished inputs
and outputs);
Initialization of the synaptic gains matrices relative to all the
layers

For each input { }1, , Pp N∈ …
, do

relative calculations of the forward phase
Calculate

()() () (1) (0)()() , (), () ,
p p pl l l ply n f n W n y n y x−= =

relative calculations of the phase backward
Calculate

2 2()

1 1

1 1
() () ()

2 2

L Lp
k k

p p L p
j j j

j j

n d y n e nε
= =

   = − =   ∑ ∑
If layer = L, calculate the gradient

 ()2
() () ()() () 1 ()

pL p L Ln e n y nδ  = ⊗ −  
else

()(1) (1) (1)() () ()
TTl l ln n W nγ δ+ + + =   

Atualizations of the synaptic gains

For each layer { }1, ,l L∈ …
, do
() ()() ()() () () ()

p T
l ll lW n W n n y nηδ  = −  

End

Fig. 1 Backpropagation algorithm

Generally, the possibilities of exploration of the
parallelism in a trained MLP neural network using
the backpropagation algorithm can be divided in three
main kinds: parallelism by decomposition of the
training set, parallelism by decomposition of the
computation between layers and parallelism by
decomposition of the computation in each knot
(neuron) of the network [7].

The parallelism by decomposition of the training

set { }, , 1, ,p p
Px d p N= …
, consists of dividing the set

into several subsets, so that each subset is used for
the training of a network's copy. All the copies are
initialized with the same synaptic gains. Therefore,
each parallel task is constituted of a subset of the

training standards and of a copy of the network to be
trained.

Initially, it is accomplished in each task the
processing regarding the forward and backward
computation stages of the backpropagation algorithm,
in such a way that in the end each one of them has
the variations of the synaptic gains associated to its
accumulated training subset. Each task sends then
the matrix with the variations accumulated for a
coordinating task and this makes the update of the
set of synaptic gains. The new data are transmitted
back for each one of the tasks and it is initiated a
new iteration of the process of local update of the
synaptic gains. This process is repeated until is
reached a pre-determined value for the global mean
square error.

From the point of view of parallel processing, the
algorithm introduces a fork-and-join communication
structure. During the expansion phase, a great
number of tasks can be created, while during the
contraction phase, only a task is executed. This
forces the utilization of global communications of the
kind one-for-all, and all-for-one, which are not
recommended in an efficient algorithm.

3 Competitive strategies for the
improvement of the performance

Although the algorithm introduced in the preceding
section is effective in decreasing the time used in
training the network, it just distributes among tasks
the existing computation in the problem. It is actually
an adaptation of the classical sequential algorithm to
allow the exploration of the parallelism.

Analyzing that fact, a new approach was
developed with the aim to use not only the
possibilities of the parallel sequential algorithm, but
also to discover other possibilities based on the
exploration of the concurrency/independence aspect
inherent to the parallelism.

The new algorithm is based on a parallel vision of
the problem and, with this, some advantages were
obtained. In the classical parallel algorithm, the
multiple tasks have their synaptic gains initialized all
in the same way, which corresponds to a single point
of the parameter's space (synaptic gains) under the
error surface. In practice, even though the tasks

initialized the matrices of synaptic gain in different
points (with no apparent advantage), after the
presentation of the first epoch, they would have to
leave from a single common point of the parameters
space, because the matrices of synaptic gains, for all
the tasks, are obligatorily the same.

The new algorithm tries to keep some
characteristic of the classical algorithm, such as:

• Each parallel task executes the training of a
copy of the network;

• The whole training set is used during the
learning phase, although in one given iteration
each task uses only a partition of it.

Beyond these, new characteristics are added to
the algorithm, such as:

• Each task uses its own matrices of synaptic
gains;

• The training set is introduced in its totality to
each one of the copies of the network.

• After a pre-determined number of iterations,
the tasks exchange information on the course
of their learning processes, taking decisions
about the continuity of them;

• The communication structure is simplified,
avoiding communications of the kind all-to-one
and one-to-all.

The utilization of multiple initializations of the
matrices of synaptic gains allows that each task
explores different regions from the search space [12-
13], which permit the cover of the biggest possible
area of the parameters space under the error
surface. This, in practice, accelerates the
convergence, because the initialization of the
matrices of synaptic gains in different points, can
generate in the tasks different trajectories in the
search of the minima of the problem.

In the classical parallel algorithm, as the matrices
of synaptic gains are identical for all the tasks in
every training process, we have a much smaller
probability to avoid minima locations. On the other
hand, the competitive parallel algorithm works with
different matrices of synaptic gains in the
initialization and during the training for each task,
enlarging the search possibilities of the global
minimum of the system, and avoiding, with a larger
probability of success, the minima locations.

For each copy of the network to be trained in an
efficient form, one should use the complete set of the
training standards. However, if for each epoch is
introduced the complete set, the time of processing
for each iteration is going to grow, and could make
unfeasible the increase in the convergence speed. To
keep the dimension of the training set identical to that
of the classical algorithm, it was used the following
procedure: for each iteration, one chooses a partition
of the training set to be introduced to the network. In
a new iteration, this partition is modified, in such a
way that the whole set can be introduced to the
network.

 For each iteration of the backpropagation
algorithm, the matrices are up-to-date locally
following the gradient method. Moreover, after a
number of pre-determined iterations, the tasks
change information on the trajectories explored by
each one of them and take decisions about the path
to follow, procedure known in the literature as
diffusion [12]. Inside the fundamental characteristic
of the algorithm, which is the exploration of different
trajectories by each task, after taking the decision,
each one of them should continue the learning with
their own matrix of synaptic gains.

Two aspects should be considered in the new
algorithm: (i) the definition of the number of iterations
after the tasks change information and (ii) the
decision rules for the alteration of the matrices of
synaptic gains. To solve the first aspect, two
approaches are possible:

• Accompany the evolution of the error to
change information whenever the training
process of the network in one of the tasks
starts to diverge. As the convergence is not
always monotonic, the error can oscillate during
a certain period and start to decrease from a
given iteration. This fact imposes difficulties to
define exactly when the training diverges. One
alternative is to consider the error's average on
a given horizon (number of iterations), as a
form of eliminating the oscillations. Other
difficulty is related to the parallel execution of
the algorithm. Since the task detects that its
training process is diverging, it should notify to
all the others the need of modify their matrices
of synaptic gains. That imposes the need of

synchronization points in the algorithm,
jeopardizing its performance;

• A second approach is to determine the number
of iterations. The problem in this case is to
avoid that the information exchange is too early
or too late.

With regards of the definition of the decision rules,
it should consider that after a certain number of
iterations, each task owns matrices of distinct gains,
modified by the gradient method. Based on this set, it
was adopted the use of different competitive
heuristics, as listed below:
• Heuristic 1: In a new iteration one of the tasks

uses the best set W of synaptic gains (the one
that presents the least error for the samples of
the training set). In this case, it preserves the
best result obtained in the exploration of the
trajectories by the tasks;

• Heuristic 2: In a new iteration, one of the tasks
uses the average of all the sets of synaptic gains
of the tasks. As in the training by epoch it uses
the average of the local gradients to update the
gains, the general average of all the sets
reinforces that procedure;

• Heuristic 3: In a new iteration some tasks use
the best set W of synaptic gains with some kind
of modification. These modifications can be of
two kinds: increase a portion of the set of local
gains or utilize a perturbation in the elements of
the better set (introduction of a virus). The goal
is to dislocate the parameters set of the minimum
point, as a form of avoiding the convergence for
local minima.

An important aspect to be observed is that the
decision process can be locally done for each task.
However, to be possible, all of them should have
knowledge of all the set of synaptic gains obtained by
each of them individually. That defines the
communication structure of the algorithm.

To identify which is the best set of gains, it
becomes necessary to calculate the associated errors
to each one of these set. Adopting a partition
strategy of the training set so that, for each iteration:

1 1

T TN N

i i
i i

X X e X
= =

= = ∅∪ ∩ (2)

where TN is the number of parallel tasks, iX is the
partition used by the task iT and X is the training
set, we can calculate the error by the expression:

()

1

() 2

1 1

1
() (,)

1
[(,)]

2

T

i

i i

iT
i

i

N
X

med T T
iP

XN
X

j T
i jP

W n W
N

e n W
N

ε ε
=

= =

= =∑

∑∑
(3)

where
iTW represents the set of synaptic gains

associated to the task , 1, ,i TT i N= … and iX the

number of partition elements iX , i.e., i
T

X
X N=

supposing X multiple of TN . The least minor error
associated to the different sets is given by:

min
min (), 1, ,

imed med T TW i Nε ε= = … (4)

As each task accomplishes its training on a
distinct partition iX and, at the end of the fixed

number of iterations has a
iTW , also distinct, it

becomes necessary to circulate among the tasks all
the pairs (,)

ii TX W . To do that, we can use

communications of the kind all-to-all, but these are
onerous enough from the point of view of time of
execution of the algorithm. We opted therefore by
the iterative form of communication over a ring.

In the first iteration of the communication process,
each task calculates and stores the error regarding
its data partition and its set of synaptic gains,
transmitting afterwards the set of gains and the value
of the error for the neighbor task, in the route path of
the ring. In the second iteration, each task calculates
the error regarding the set of received training, stores
that value and transmits the gain set and all the
stored and received errors in the previous iteration.
The other iterations on the ring procede in the same
way until all the sets of synaptic gains have been
sent/received. Observe that, in this process, some
errors are calculated in each task and the remaining
are transmitted by the other tasks. The algorithm in
pseudo code can be seen in Figure 2.

While the stop criterion is not reached, do:{
local initialization of the data;
shuffled of the training set;
While n times are not processed, do:{

Calculation of the standards band for each task;

If rank==0 { // coordinating task
Do the calculation of the number of
standards of the subset;

If the number of standards is odd add 1 to the number of
standards to be trained by rank 0;

} else { // other tasks
Do the calculation of the number of standards of the subset;

}
For each standard of the subset, do:{

Calculate the phase forward{
Calculate the local error;

}
Calculate the phase backward{

Calculate the variations of the synaptic gains;
}

}
Update local synaptic gains by using the Delta-bar-delta rule;
}
For each passage of the ring do:{

Send the matrix of valid gains for the successor;
Calculate the error for the subsets of local standards and the
matrix of received gains(); // in the first time the received
equal to the current
Keep the error and the passage of the ring;
If it is not the first passage of the ring do:{

Calculate the error for the subsets of the standards
received and the local gain matrix;
Keep the errors and the passage of the ring;
Send all the calculated and received errors in the
previous step of the ring for the successor;
}
Receive the matrix of synaptic gains from the
predecessor
If it is not the first passage of the ring do:{

Receive all the correspondents errors sent by the
predecessor;
Keep the received errors;

}
}
It calculates the new initial matrix of synaptic gains for the
next n times;
increase the iteration;

}

Fig. 2. Competitive parallel algorithm

4 Application of the algorithm in the
solution of complex problems

The image compression becomes more and more
important to solve capacity limitations problems of
the communication's channels. It is a complex
problem, for which many different techniques have
been developed. MLP's utilization appears as an
approach with promising possibilities to contribute for
the solution of the problem [9].

For implementation of the parallels algorithms we
used an Beowulf architecture [10] with double bars
and 14 processors, available in the Automation and
Computer Engineering Laboratory at UFRN.

To obtain the image's compression using MLP we
proceed in the following way: reduce the number of
neurons of one of the hidden layers of the network.
The training consists of letting the network learn to
repeat in its output the standards that are introduced
in the input. The compression/decompression
procedure of the image is done by the partition of the
network in two, one being defined up to the strangled
layer and the other from this stage. The compressed
image corresponds then to the output of the neurons
of the strangled layer.

For the training it was used an image of Lena in
black and white, composed of 512x512 pixels or
262.144 points. The segmentation of the data was
made starting from windows of 8x8 pixels.
Moreover, the values of the data were in the range
between 0 and 1 and after that normalized and
scaled.

It was used three topologies for the neural
network: 64:8:8:8:64, 64:16:16:16:64 and
64:32:32:32:64. The set of complete training was
made up of a thousand points (window of 8x8 pixels)
of the image.

The results obtained with the classical parallel
algorithm for the problem of the training, when used
the compression rate of 64:32, are shown in Table 1.

Table 1. Results of execution of the classical
parallel algorithm

Compression 64:32Number of
Proc. Exec. Time Gain Efficiency

1 32601.81 1.00 1.00
4 8687.311 3.75 0.94
8 4741.956 6.86 0.86
14 3644.731 8.94 0.64

For the other topologies of the network the results
were very similar and will be omitted here.

Before the comparison with the competitive
algorithm, we tried initially to verify the influence of
the initialization in the classical parallel algorithm. For
ten different initializations, we verified a variation in
the time of execution of the order of 52%. To make

comparison, it was used the least training time of all
the initializations.

For comparison effect of the performance of the
two algorithms, we defined the gain in time through
the expression:

usual_parallel_execution_time
speed-up

competitive_parallel_execution_time
=

The results obtained in terms of gain and time of
execution are shown in the Table 2 below:

Table 2. Results of Gain And Time of
Execution

Competitive Compression
64:8 64:16 64:32

Gain 5.17 2.28 7.25
Time 42.027 113.628 502.791

The communication rate used in the competitive
parallel algorithm for each training was 50 epochs for
each communication. Taking into account that it was
not used an average for the several initializations of
the classical algorithm but, instead, the best of them,
one can prove that the new algorithm reduces
efficiently the time of training. Other important
aspect to be analyzed is the quality of the obtained
solution. Tests were accomplished to verify the
generalization capacity of the network, after the
training [11].

5 Conclusions

In this work it was introduced competitive
techniques for the training of multilayer perceptrons
using backpropagation. Allied to the parallel
processing, such techniques showed to be very
effective in decreasing the time of training of
networks with complex topologies. Once the
parameters space is explored in different points, one
can avoid the problem of the local minima, besides
obtaining a sharply superior quality in the results of
generalizations generated by the network. Therefore,
it is allowed to foresee an enlargement in the
utilization of such a kind of neural network.

References:

[1] P. J. Werbos. Beyond regression: New tools
for prediction and analysis in the behavioral
sciences. PhD thesis, Harvard University, 1974.

[2] D. E. Rumelhart, G. E. Hinton, and R. J.
Williams, Learning representation of back-
propagation errors, Nature (London), vol.323,
533-536, 1986.

[3] D. R. Hush, B. Horne and J. M. Salas. Error
surfaces for Multilayer Perceptrons. IEEE Tr. on
Sys., Man and Cybernetics, vol. 22, 1152-1161,
1992.

[4] Y. LeCun, L. Bottou, G. Orr, and K. Muller.
Efficient BackProp, Neural Networks: Tricks
of the trade, (G. Orr and Muller K., eds.), 1998.

[5] V. Kumar, S. Shekhar e M. B. Amin. A
Scalable Formulation of the Backpropagation
Algorithm for Hypercubes and Related
Architectures, IEEE Tr. on Par. and Dist.
Systems, vol. 5, 1073-1090, 1994.

[6] S. K. Foo, P. Saratchandran e N. Sundararajan.
Parallel Implementation of Backpropagation
Neural Networks on a Heterogeneous Array
of Transputers, IEEE Tr. on Sys. Man and
Cybernetics, Part B, vol. 27, 118-126, 1997.

[7] J. Torresen. Parallelization of
Backpropagation Training for Feed-Forward
Neural Netoworks, PhD thesis, The University
of Trondhein, 1996.

[8] A. Novokhodko e S. Valentine. Parallel
Implementation of the Bach Backpropagation
Training of Neural Networks, Proc. of The Int.
Joint Conf. on Neur. Net., IJCNN, July, 2001.

[9] R. C. Gonzalez e R. E. Woods. Processamento
de Imagens Digitais, vol. 1, page 227, Edgard
Blücher, São Paulo, SP , 2000.

[10] T. Sterling e D. Becker. The Beowulf Project.
www.beowulf.org.

[11]R. L. S. Alves, J. D. Melo, A. D. Dória Neto e
A. C. M. L. Albuquerque. New Parallel
Algorithms for Back-Propagation Learning,
IJCNN2002, Honolulu, Havaí, USA, 2002.

[12] M. Toulouse, T. Crainic and K. Thulasiraman,
Global Optimization Properties of Parallel
Cooperative Search Algorithms: A Simulation
Study, Parallel Computing, vol. 26, 91-112, 2000.

[13] M. Toulouse, T. Crainic and B. Sansò, Systemic
Behavior of Cooperative Search Algorithms.
Parallel Computing, vol.30, no 1, pp 57-79, 2004.

