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ABSTRACT

This paper deals with conditional prediction of Markov pro-
cesses. An algorithm referred as Non Parametric Viterbi
(NPV) and based on Hidden Markov Chain theory is pro-
posed and compared to Multi-layer Perceptron predictive
models and General Regression Neural Networks. The eval-
uation is firstly carried out on stationary chaotic time series
describing the Lorentz attractor. It is shown that, although
neural network models generate very low instantaneous er-
rors, the non parametric Viterbi approach allows to better
take into account the dynamical structure of the underlying
dynamical process.
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Introduction

We address the non parametric modeling of multivariate
Markovian processes using a continuous state space and dis-
crete time Hidden Markov Model (HMM) for which all nec-
essary densities functions are approximated using samples.
The proposed NPV (Non Parametric Viterbi) algorithm is
compared to neural networks models: a Multi Layer Per-
ceptron and a General Regression Neural Network.

The proposed NPV approach to prediction is based on
HMM modeling. Three classical problems have been solved
for discrete HMM that make this kind of model quite useful
[12]:

1. the estimation of the probability that the model gen-
erates the observation sequence �������
	����� : the
forward-backward algorithm as been developed;

2. the recovery of the most likely hidden state sequence
corresponding to these observations: dynamic pro-
gramming (Viterbi algorithm [4]) is commonly used;

3. the estimation of the parameters of the HMM (transi-
tion matrix, prior state distribution, observation con-
ditional distribution) to better account for the obser-
vations: the EM-algorithm or Baum-Welch algorithm
have been proposed for this task.

In continuous state space situations, the problem of parame-
ter estimation is much more complex [16]. In this paper we
address mainly three issues:

1. the local discretization of the observation and state
spaces in which the process is handled.

2. the estimation of the parameters of the HMM model,
namely the probability density functions involved in
the proposed model according to the proposed dis-
cretization of observation and state spaces.

3. the estimation of the hidden state sequence ��� � ��	���� conditionally to the observation sequence ��� � ��	���� and the model � : ������� � ��	����������� � ��	�� ��!���#" .
The proposed model approximates the initial multivari-

ate process (IMP) by decomposing it into a Lower Dimen-
sional stationary Markov Chain (LDMC) for which state
transitions are hidden. Indeed, state process is indirectly ob-
served through a second stochastic process that generates a
multivariate observation from any state of the LDMC. The
hidden LDMC state vector coincides with the first coordi-
nates of the state vector of the IMP, while the multivariate
observation vector coincides with the last coordinates of the
IMP state vector. This decomposition induces a dimension
reduction that allows to handle more complex processes, at
a computational cost that can be estimated from the data.
A Viterbi algorithm referred as Non Parametric Viterbi Al-
gorithm (NPV algorithm) is proposed to extract most likely
LDMC state trajectories from sequences of observation vec-
tors. This approach can be used to predict state trajectories
when the underlying multivariate dynamical process is par-
tially observed. The method is thus of practical use in case
of partially missing or noisy sample data. It can also be used



2as a bootstrap technique when the dimension reduction of
the state space is necessary for complexity management.

In the first section the Hidden Markov Model for general
stationary discrete time continuous state space processes is
defined, NPV algorithm is described and shortly discussed.
Then, in the following sections, this algorithm is evaluated
against neural network models for conditional prediction of
a component of a chaotic process.

1. HIDDEN MARKOVIAN MODEL FOR
STATIONARY PROCESS MODELIZATION

1.1. Notations, definitions and hypothesis

Let �%$&����	'�(�� be a ) -dimensional stochastic process in�+*-,!��. , " where . , is the Borel / algebra over *0, . We
call this process the Initial Multivariate Process (IMP). This
process can be decomposed in two dependent lower dimen-
sional processes: ��� � ��	��1�� being a 2 -dimensional stochas-
tic process in �+*-34�5. 3 " , and ��� � ��	����� being a 6 -dimensional
stochastic process in �7*-89��. 8 " , with 2;:�6=<�) , and >?	���$ � <�7� � ��� � " .

We suppose that there exists a positive integer @BADC
such that the stochastic process ��� � �E	GFH@I� with J � <��� � ��� �LK;M �ONPNQNP�
� �LKSROTUM � forms a stationary Markov chain on�+*-3 R ��. 3 R!" with transition kernel ���WV?��XY" where X[Z�*03 .
We assume that for each 	]\_^ `a�5bdc the Markov kernel ���+V?��Xe"
admits a stationary distribution f with continuous probabil-
ity density function g�h with respects to Lebesgue measure.

Furthermore, we define the stochastic process ��i]���j	kF@I� where il�-<m���d�����d�LKIM��ONPNPNQ���d�LK?n5TUM�� and opA(C is a
positive integer.

We consider that the ��������	=�q�� stochastic process is
made available, through measurements or any kind of simu-
lation procedure (for instance by means of LGB re-sampling
[10]). The question that we address is to undercover the un-
derlying Markov process, namely, ���I���
	]� �� conditionally
to the observed �����
�
	��r�� stochastic process in order to
approximate at best the initial process (IMP).

1.2. Local discretization of the state spaces

Let s�JS� be the neighborhood of Jt� defined as the set ofJSuv\w�yxJ4zS� )t�9xJtza��J � "|{}/S~l���9� where ��\w^ `a��b�c�� . We
note �t^ s�J � c the set of time index such that for all ��\�4^ s�J � c��
JSul\�s�J � . Furthermore, we define the image ��s�J � " T
of s�J � by ��s�J � " T <����?u TUM ����\��t^ s�J � c���Z�*-3 . We de-
fine s=i � and �t^ s�i � c similarly. Finally we define s�J � � i �
the set �yxJ u ��xi u \�s�i��
� .
The local discretization of the state space is obtained ac-
cording to the schema presented in Figure 1: for each obser-
vation i�� , we evaluate the neighborhood s�iy� that defines
the set s�J4��� i�� . This set defines the local discretization of
the state space at step 	 .
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Fig. 1. Discretization of the state space given the observations�����
and
���I���;�

1.3. Parameters estimation of the HMM model

The density probability functions g!h and �!h of the station-
ary distributions as well as the transition probability dis-
tributions will be approximated from data using appropri-
ate density kernel estimates. In particular, we suppose that
some learning data ��x$ � <��?xJ � �kxi � "���	=�q�� is available to
estimate non parametrically the transition probability den-
sity functions for the subprocess ��J � ��	����� : the dynamics
of ��J � ��	��1�� is not hidden at this stage.

Let � 3 and � 8 be probability density functions on *03
and *-8 respectively, � 3 R and � 8 n probability density func-
tions on *-3 R and *-8 n respectively. Let ��  ~ ��bB<�`a�%��
�a�ONPNQNQ�
and �� 4¡~ �5b¢<£`S�O������%NQNPN¤� sequences of positive numbers
such that   ~¦¥ ` and   ¡~ ¥ ` as b ¥ C . We suppose that
the density kernels � 3 , � 8 , � 3 R and � 8 n satisfy the usual
conditions (See for instance Bosq (1998) [?]).
Estimation of the transition probability density
The transition probability function of state �I�WTUM given ob-
servation J4� is estimated non parametrically using a kernel
estimate. The kernel estimate is based on the product of
three terms. Two first terms measure the distance between
respectively the state vectors and the observation vectors of
the current neighborhood.@U��� �WTUM � J � "y< §¨+©!ªO« ¬ h�W® � 3 ¯ � �WTUM�° x� ¨ TUM  ~ ± � 3 R ¯ J �U° xJ ¨  ~ ± (1)

From this density of probability, we define the probability
mass for the discrete random variable ² taking its values
in �t^ s�i �WTUM c�<r��³´\pµv�_xi]¶·\Bs=i �WTUM � , with probability
mass function given by:����²¦<�³4"�< @U�7�;�WTUM�< x� ¶ � J4�5"¸p¹ ©!ªO« ¬Iº ¼»¾½�® @j�7� �WTUM <¿x� ¹ � J � " ��>I³�\��4^ s=i��WTUM
c (2)



3Estimation of the observation probability density
Observation probability density functions are estimated sim-
ilarly as transition probability functions just above.@U�Li � � J � "y< §¨+©!ªO« ¬ h�W® � 8 n ¯ i ��° xi ¨  ¡ ~ ± � 3 R ¯ J �j° xJ ¨  ~ ± (3)

Given this density of probability, we define the probability
mass for the discrete random variable À tacking its values
in �t^ sEJ � ck<H��³�\|µv��xJt¶�\Bs�J � � , with probability mass
function given by:���+À�<�³S"�< @j��i � <£xi]¶a� J � "¸ ¹ ©!ªO« ¬ h�+® @j��il��<¢xi ¹ � J4��" �Á>;³�\0�t^ s�J � c (4)

1.4. Estimation of the most likely state sequence

Given an observed sequence i�M ~ <Â��i]M��OÃ%ÃOÃI��i ~ " , the in-
ference of the most likely state sequence ÄJ ~M <Å�aÄJ M �OÃOÃ%Ã;��ÄJt~l"
is achieved using algorithms that perform the following max-
imization:ÄJ ~M <�Æ�Ç�Èh�½�É ���7J?M ~ � i]M ~ ���#"�<BÆ�Ç�Èh�½5É ���+J;M ~ ��i�M ~ ���#"

The Viterbi algorithm [4] finds the above maximum with
a relatively efficient recursive solution: its computational
cost is proportional to the number of non-zero transitions
probabilities multiplied by the sequence length. First Ê��WË���	5"
is defined as:Ê��WË���	5"�<ÌÆ&Ç�Èh�½ +Í¾½ ����i M � �
J M �LK;M �
J � <(xJ ¨ �
�#"
which can be computed recursively as follows, using the
usual Markov conditional independence assumptions:Ê��+Ë���	5"�<�����il��� JS�y<(xJ ¨ "Î Æ�Ç�È¹ ���+J4�y<(xJ ¨ � JS�LKIMd<(xJ ¹ ���#" (5)Î Ê��PÏ��
	 ° �"

with the initialization:Ê��+Ë
�%�"l<�����i M � J M <(xJ ¨ "����9xJ ¨ "
If we define:Ð �WË��
	5"�<�Ñ¾Ò���Æ�Ç�È¹ ���+J4��<(xJ ¨ � JS�LKIM�<(xJ ¹ �
�#"ÁÊ��QÏ!��	 ° �"
then we obtain the optimal state sequence ÄJ ~M using the fol-
lowing backward recursion:ÄÏ ~ <�Ñ!Ò���Æ&Ç�È¨ Ê��+Ë
��be"
�ÄÏ �LK;M < Ð � ÄÏ � �
	5" and >;	��IÄJ � <�J�Ó¹  (6)

1.5. Non Parametric Viterbi Algorithm

The proposed Non Parametric Viterbi algorithm can be de-
scribed as follows.
Initialization step -Ô Select the initial observation i�Õ , the bandwidth pa-

rameters   ~ and  S¡~ , the width /th (respectively / º )
of the neighborhood of a given state (respectively of
a given observation).Ô From i Õ (at 	�<Å` ) determine the set of initial statess�J Õ � i Õ as specified in Figure 1 at 	�<B` .Ô Initialize prior probabilities according to the mass func-
tion defined in equation (4).

Step 	 -Ô Discretize the state space using s�J � � i � as specified
in Figure 1 at time 	 (we suppose that the state space
is discretized at step 	 °  , using s�Jt�LK;M�� i��LK;M ).Ô Evaluate observation probabilities at step 	 according
to the mass function defined in equation (4).Ô Evaluate state transition probabilities from step 	 ° 
to step 	 according to the mass function defined in
equation (2).Ô Compute Ê��+Ë���	5" according to equation (6) for Ë�\�4^ s�J4��� i��7c

Stop condition ��	�Ö
@�b -Ô At 	�< b compute the most likely state sequence ac-
cording to equation (6).

In next section, performance of NPV algorithm is com-
pared to performance of neural network models in the con-
text of conditional prediction of Lorentz oscillator.

2. EVALUATION

2.1. General Regression Neural Network

GRNN or ”General Regression Neural Networks” have been
proposed by Donald Specht [15]. They are relevant to Nadaraya-
Watson kernel regression method [?], or Parzen window
methods [14]. GRNN is a normalized Radial Basis Function
(RBF) network for which a hidden unit is centered at every
training sample. The RBF units of a GRNN architecture
are usually characterized by Gaussian kernels. The hidden-
to-output weights are identified to the target values, so that
the output is a weighted average of the target values of the
training samples close to the given input case. The only pa-
rameters of the networks are the widths of the kernels asso-
ciated to the RBF units. These widths (often a single width



4is used) are called ”smoothing parameters” or ”bandwidths”
[18] [17]. They are usually chosen by cross-validation or
by ad-hoc methods not well-described. GRNN is a univer-
sal approximator for smooth functions, so it should be able
to solve any smooth function-approximation problem pro-
vided enough data is given. The main drawback of GRNN
is that, like kernel methods in general, it suffers badly from
the curse of dimensionality. For the following evaluations,
the bandwidth of the RBF units is chosen as the size of
the neighborhood of the considered input case containing
at least 5 neighbors

2.2. Multi-layer perceptron networks

The MLP model [13] [2] is a very general feed-forward neu-
ral network. It has often been found to provide compact rep-
resentations of nonlinear mappings in real-world problems.
The MLP network is composed of input and output layers
separated with one or more hidden layer(s). Each layer is
composed with neurons characterized with a nonlinear ac-
tivation function (usually hyperbolic tangent or logistic sig-
moid functions). It has been shown that one layer of suitable
nonlinear neurons followed by a linear layer can approxi-
mate any nonlinear function with arbitrary accuracy, given
enough nonlinear neurons are provided [5]. MLP networks
are thus universal function approximators.

2.3. Conditional prediction of Lorentz chaotic systems

The Lorentz attractor [6] is chosen as example for compari-
son of several predictive models. This oscillator model has
been used the first by Lorentz in meteorology to modelize
turbulence consisting of rollers of parallel convection that
appear in a horizontal layer of fluid heated in its inferior
part. Simplified equations are given by:×Ø ÙÛÚÜ <�Ý�Þ;ß��+V ° Ü "ÚV&< ° Ü4à :´Ò Ü ° VÚà < Ü V °_á à (7)

where Ý�Þ;ß is the number of Prandtl and parameters Ò andá depends on Rayleigh number. This oscillator exhibits a
chaotic behavior characterized by an attractor with two lobes
as shown in figure 2. The chaotic series has been computed
with Ý=ÞIß�<¿%â , á <rã , Òv<�ã¾ä�N å!� integrating equations
(7) by a fourth-order Runge-Kutta method with time stepæ �l<�`aN `!� . The dimension of the attractor is 2.06.

NPV algorithm is compared with several classical algo-
rithms:

1. Nearest Neighbor (NN): using the same structure as
NPV algorithm it is straightforward to return the state
corresponding to the nearest neighbor of the current
observation.
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Fig. 2. The 3D Lorentz attractor

2. Multi Layer Perceptron (MLP) with 2 layers and 20
hidden units on each layer. The activation function is
the hyperbolic tangent defined by gl� Ü "]< M�K4çLè�é�êWK?ë%ìM5T;çLè�é�êWK?ë%ì .
And the model is learned by maximizing the likeli-
hood of the residuals that are supposed to be indepen-
dent and Gaussian. The network is trained by back-
propagation.

3. General regression Neural Network (GRNN)

Each models are trained with the same sample of variable
length (from 10000 points to 97000 points) and validate on
3000 points samples. For each test, the mean absolute error
between Ü -component of the validation set and the corre-
sponding prediction is computed. Results are given in ta-
ble 2.3. Results of table 2.3 show that NPV algorithm bet-

1e4 pts 5e4 pts 8e4 pts
NPV .183 .069 .054

NN .289 .112 .084
GRNN .693 .218 .0812

MLP .062 .054 .055

Table 1. Mean of absolute error between prediction and reference
according to the length of the training sample

ter predict Ü -component of the Lorentz attractor as Nearest
Neighbor and General Regression Neural Network models.
In fact, Viterbi algorithm take into account the whole tra-
jectory of the process for the prediction and that permits to
better restore the dynamical structure of the system. One
observes that NPV needs long training samples to attain
MLP error. Some numerical tests have demonstrated that
NPV error still decreases when the sample size increases.
MLP produces a low mean absolute error. This error is
high correlated to the complexity of the MLP architecture.
We remark also that MLP errors does not decrease anymore



5

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

Fig. 3. black curve: reference reconstructed trajectory, red curve:
NPV prediction
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MLP prediction

when the size of the training sample increase after a sample
size level between 10000 and 50000. It is due to the para-
metric structure of MLP. Indeed, parametric models need
generally smaller training sample to learn the model than
non parametric models so that the model is all ready opti-
mally learned with 50000 points samples. The residual error
of MLP reported in table 2.3 is likely due to a bias. More
complex structures of networks could probably improve this
result.

Figures 3 and 4 show the reconstructed attractor in a 2-D
space from the predicted Ü -component of Lorentz attractor.
One can observe that NPV prediction is superimposed on
the reference trajectory most of time while MLP is often
lightly shift. Figure 5 plots the absolute residuals. One can
remark that NPV generates more high errors than MLP but
for NPV the small errors are smaller in mean than for MLP.
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Concluding remarks

In this paper, a non parametric version of Viterbi algorithm
is proposed to modelize and predict part of a multivariate
stationary discrete time continuous space Markov processes
conditionally to the remaining part. The performances of
this algorithm are compared to those obtained with classical
neural networks models (MLP and GRNN) for the predic-
tion of a component of a chaotic system.

It is shown that, although neural networks as for in-
stance MLP allows to achieve a good prediction for the
Lorentz attractor, NPV algorithm shows the same order of
error when the training sample set is large enough. Further-
more, Viterbi algorithm take into account the whole trajec-
tory for the prediction and seems to better restore the dy-
namical structure of the process than other algorithms. But
it must be underline here that more complex MLP structure
would probably improve the results.

NPV algorithm runs quickly and is quite easy to use for
various types of multivariate data. There is essentially one
critical parameters in the algorithm: the bandwidth param-
eter used in the non parametric estimations of the proba-
bility density functions. This parameter can be regulated
empirically. A version of NPV has been developed to pre-
dict cyclostationary processes that as meteo time series for
instance [7].
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