
Parallel hybrid Price-genetic algorithm for global optimization

MARGHERITA BRESCO AND GIANCARLO RAICONI
Department of Mathematics and Informatics (DMI)

University of Salerno
via Ponte Don Melillo
I-84084 Fisciano (SA)

ITALY

Abstract

A hybrid algoritm to find the absolute extreme point of a multimodal scalar
function of many variables is presented. The algorithm is well suited to be
implemeted in parallel over a distributed computer environment. The algorithm
is suitable when the objective function is expensive to compute, the computation
can be affected by noise and/or partial derivatives cannot be calculated. The
method used is a genetic modification of a previous algorithm based on the
Price’s method. The genetic part of the algorithm is very effective to escape
from local attractors of the algorithm and assures convergence in probability to
the global optimum. The parallel implementation of the algorithm is based on
a domain decomposition approach, fully exploiting available information over
global behaviour of the function, reducing to a small amount the computer
charge due to need for syncronization. The algorithm has been tested for
optimizing several multimodal test function.

Key-words:- Global Optimization, Controlled Random Search, Genetic Al-
gorithms, Parallel Computation.

1 Introduction and problem formulation

The problem of finding the minimum of a given function
f : Rn → R was studied extensively and many efficient
algorithms are available to solve it. Most algorithms de-
veloped for this purpose are devoted to find a local mini-
mum. In recent years more attention was reserved to the
problem of finding the global minimum of a multimodal
function. Several approaches were proposed to solve this
kind of problems, [6],[11]. Most studied classes of global
optimization (GO) problems are: combinatorial problems
with a linear or nonlinear function, defined over a set of
solutions that is finite but very large [10]; general uncon-
strained problems, that have a nonlinear objective func-
tion defined over reals unconstrained or subject to simple
bound constraints.

In dealing with problems of the last mentioned class,
a variety of partitioning strategies have been proposed to
solve this problem exactly. These methods typically rely
on prior knowledge of how rapidly the function can vary
(e.g. the Lipshitz constant) [14] or the availability of an
analytic formulation of the objective function (e.g. inter-
val methods). Statistical [8] methods also use partitioning
to decompose the search space, but they use prior infor-

mation (or assumptions) about how the objective function
can be modeled. A wide variety of approximate methods
have been proposed for solving these problems, including
simulated annealing, genetic algorithms, clustering meth-
ods, and continuation methods. When the computation
of the objective function is very expensive, derivatives of
the objective function are not available and/or the compu-
tation of objective function is affected by noise the most
adapted methods ([2], [7], [3]) are the controlled random
search (CRS) ones. Such family of methods first examine,
using some random search scheme, all areas of definition
region of the function in order to locate the most promis-
ing to contain the global minimum. When one sufficiently
small of such promising areas is found, a local search is
started to refine the global minimum estimate. In CRS
methods the global search is performed maintaining a pop-
ulation of candidate points that tends to cluster around
most interesting areas, giving also information about the
global behavior of the function. The first of CRS is that
of Price [12], [13], the algorithm in [3] improves the local
search phase of the CRS method without any significant
increase in computational cost. A further improvement of
the method in [3] was obtained by authors [4] introducing
a global minimization step based on a Genetic Algorithm

1

(GA) [5] when the local optimization based on a quadratic
model of the function fails to find a definite positive ma-
trix.

A difficulty always present in GO problems, and much
more in the presence of complex objective function, is
the severe computational effort required. In fact in order
to escape from local extrema the value of the objective
function over a rich population of test points must be
computed at any step of the evolution of algorithm. If
a complex objective function must be optimized and
results must be obtained in real time, the only available
possibility is that of resorting to greater computational
power. At present days one of most cost effective ways
to obtain this result is to use parallel computation over
a distributed computer environment, more precisely on
cluster of general purpose processing units. A bottleneck
of such an approach is that the synchronizing information
exchanged between processing units was transmitted
across a relatively low speed network. The CRS approach
is very efficient from this point of view because it can be
parallelized following a domain decomposition scheme.
We use both domain decomposition and a tree paralleliza-
tion approach that enable us to efficiently share relevant
information about global behavior of the function, using
very little synchronization work an obtaining very good
results. In order to optimize the management of comput-
ing resources we use the MOSIX [1] parallel computing
environment. In fact, in MOSIX the migration of the
workload is allowed from a node to another in a pre-
emptive and transparent way, accomplishing in this way
an efficient load balancing and preventing the trashing
in case of memory-swapping. Several adaptive resource
sharing algorithms are used for the dynamic balancing
of the workload on the CPUs using when necessary the
PPM (Preemptive Process Migration) module for load
reallocation among the CPUs. The migration take place
automatically on the basis of the conditions reported by
the optimization of resource sharing and load balancing
algorithms and, in particular, the individual load of the
single nodes and the network speed.

2 The CRS-Genetic algorithm

In this section we give only the formal description and a
brief description of relevant characteristics of the Genetic
Price Algorithm (GPA), a full analysis of the properties of
the algorithm can be found in [4] . The hybrid algorithm
is described in the following pseudocode:

Algorithm GPA:

Step 0. (INITIALIZATION)

Set k = 0; determine the initial set

Sk =
©
xk1 , x

k
2 , ..., x

k
m

ª
xki , i = 1, 2, ...,m chosen at random on D; evaluate f
at each point xki , i = 1, 2, ...,m.

Step 1. Determine xkmin, x
k
max, f

k
min, f

k
max such that:

f(xkmin) = fkmin = min
x∈Sk

{f(x)} ,

f(xkmax) = fkmax = max
x∈Sk

{f(x)} .

if stopping criterion is satisfied then STOP.

Step 2. (WEIGHTED CENTROID)

Choose at random 2n + 1 points xki0 ,x
k
i1
, ..., xkin on

Sk;determine the weighted centroid

ckw =
nX
j=1

wk
j x

k
ij ,

with weights wk
j are suitably chosen.

Step 3. (WEIGHTED REFLECTION)

Determine new trial point x̃k by the weighted reflection:

x̃k =

½
ckw − αk(xki0 − ckw) if fkw ≤ f(xki0)
ckw + αk(xki0 − ckw) if fkw > f(xki0)

with fkw =
Pn

i=1w
k
j f
³
xkij

´
, and

αk =

⎧⎨⎩ 1− f(xki0)−fkw
fkmax−fkmin+ψk

if fkw ≤ f
¡
xki0
¢

1− fkw−f(xki0)
fkmax−fkmin+ψk

if fkw > f
¡
xki0
¢

If x̃k /∈ D then go to Step 2; otherwise compute f(x̃k).

Step 4. (RANDOM SAMPLING)

If f(x̃k) ≥ fkmax then choose a random point x̂ in D :

If f(x̂) < fkmax

then set Sk+1 = Sk ∪ {x̂}−
©
xkmax

ª
;

k = k + 1, and go to Step 1.

Else set Sk+1 = Sk, k = k + 1, and go to Step2.

Step 5. (SET UPDATING)

If fkmin < f(x̃k) < fkmax then set

Sk+1 = Sk ∪ {x̃k}−
©
xkmax

ª
, k = k + 1

and go to Step 1.

Step 6. (QUADRATIC MODEL OF f)

If f(x̃k) < fkmax then set

S̃ = Sk ∪ {x̃k}−
©
xkmax

ª
and select the subset Smin constituted by the 2n + 1
points of S̃ corresponding to the smallest values of
f. Determine the diagonal n× n matrix Q =diag(qi)
the vector c and the scalar d of the quadratic form
interpolating f on S̃.

f(x) =
1

2
xTQx+ cTx+ d,∀x ∈ S̃.

2

Step 7. (CROSSOVER)
If ∃ qi ≤ 0, then consider the set

Š = Smin − {x̃max} ,

with x̃max such that f (x̃max) = max
x∈S̃

{f(x)} . Using

the 2n points of Š form n random chosen couples of
points, for any couple compute two new vectors by sin-
gle point crossover with random cutting point. Then
define the set Ŝ =

©
xkT,1, x

k
T,2, ..., x

k
T,2n

ª
of all new

vectors then evaluate f on all points of Ŝ . Set Sk+1

as the set of m points of the set Sk∪ Ŝ corresponding
to the smallest values of f, set k = k + 1 and go to
Step 1.

Step 8. If qi > 0, i = 1, 2, ..., n. let xkq = −Q−1c, if xkq /∈
D or f(xkq) ≥ f(x̃k) then takeSk+1 = S̃ else take
Sk+1 = S̃ ∪

©
x̃kq
ª
−
©
xkmax

ª
; set k = k + 1 and go to

Step 1.

The whole algorithm is equal to a version of that pro-
posed in [3] except for the Step 7 of the algorithm that
represents the genetic hybridization of the CRS. In that
step both the selection and crossover operators are em-
bedded, note that Step 7 and 8 are alternative. The im-
provements of the version in [3] with respect to the original
Price’s algorithm are the introduction of weights in the
computation of centroid and of the reflection, and also the
choice of a possibly better point based on the minimiza-
tion of a quadratic model of the objective function (Step
6 and Step 8). Step 4 introduces a random choice in
the population of candidate points, this is essential to as-
sure that the algorithm generates a succession of function
values converging in probability to the global minimum.
For a discussion about such point see [15]. The algorithm
can be viewed also as a GA characterized by the following
particularities:

a) The selection operator chooses at any generation as
candidate to reproduce only the 2n best fitting indi-
viduals of that generation, in classical GA the selec-
tion operator acts applying a probability to reproduce
(proportional to fitness value) to all individuals of the
generation and selecting individuals according to this
probability. In our approach we select for reproduc-
tion exactly 2n individuals, those characterized by
lower objective functions. This approach both helps
to prevent genetic derive and preserve the same data
structure of the modified Price algorithm, thus assur-
ing that no further function evaluation are required.

b) The crossover operator is explicitly introduced in our
algorithm. Because individuals in our application are
n−dimensional real valued vectors, the crossover is
performed by splitting at a certain, randomly chosen,
index the two vector and recombining first subvector
of one individual with the second of the other an vice-
versa. All recombined vector are scanned and if one is

found with a better fitting whit respect to that present
in Sk when this occurs the last scanned of new vectors
is substituted in place of the worst fitting individual
in Sk.

c) The mutation operator is not explicitly introduced,
in fact the Step 4 of the algorithm introduce at any
iteration a random chosen point in the population,
this assures global convergence in probability to the
algorithm and prevent the genetic derive risk.

From the computational point of view note that the
new algorithm requires, with respect to the improved Price
algorithm, n more function evaluations, only when the
global improvement phase fails because it is not possible
to find a definite positive matrix Q. The selection of S̃
and Ŝ has computational cost O(0) if elements of Sk was
maintained ordered, the most complex operation on the
algorithm is the ordering of the set Sk ∪ Ŝ which has a
computational cost O(m+ n).

3 Parallel implementation

The parallel implementation of our algorithm follows a do-
main decomposition scheme, i.e. the whole domain is sub-
divided in a number of subdomains and embedded in a
tree shaped control structure. This idea is based on the
use of a three levels processes-tree. It realize the fusion be-
tween the domain splitting, and the parallelization of the
genetic search enclosed in the algorithm. At level 0 (root)
the master process works, performing the domain sharing
between his sons (slave processes at level 1). These sons
perform (each for his own count) the algorithm until the
invocation of the crossover operator. At this point the
process should do 2n function evaluations. We suppose
that every function evaluation needs approximately time
t. Each slave will spend approximately time 2n · t to per-
form this step. If each slave (level 1) should have 2n sons
(slave processes at level 2) performing the 2n computa-
tion of functions. The need for synchrony should involve,
in this case, a wait of the 1st level processes, of t + τ ,
where τ is the time needed for the communication. If τ
is much less than (2n − 1) · t, the running time of each
process at level 1 is substantial reduced. The drawback
of this approach is that, if each process is mapped on a
processor and the crossover operator is invoked rarely, the
host processors for the 2nd level processes might be often
idle, with a waste of unused resources. We can avoid this
drawback by mapping more 2nd level slave processes on a
single processor.

3.1 The problem of finding a better point out the
assigned box

In domain decomposition approach to parallel global opti-
mization the domain D is decomposed in a certain number
p of number of subdomains Di, i = 1, 2, , ..., p and p inde-
pendent processes are started, the aim of the i-th process
is to find the global minimum of the function f on Di let

3

be f̂i such minimum. When all processes are terminated
the optimum solution is chosen as the best between these
p solutions i.e. the smallest of f̂i. Following a CRS ap-
proach in any subdomain a population of candidate points
is maintained, in the case of a well shaped function in
subdomains characterized by high values of function, the
candidate points tends to cluster in few iterations near the
subdomain boundary, giving indication about the fastest
decreasing directions. Our algorithm incorporate a local
optimization idea to increase the convergence, more pre-
cisely the construction of a quadratic model of the objec-
tive function (Step 6). It can occur that Step 6 really finds
a better candidate point but such a point is away from the
subdomain assigned to such process. Following the brute
force domain decomposition rules such point is discarded
and the corresponding valuable information is lost. A pos-
sible remedy should consist in allowing that the processor
continues to use that point and, therefore, it widens its
own box. This solution should lead to a boxes overlap and
to a data duplication that might result unwanted. We will
give a better solution to this kind of problems. In this
solution a point lying in another box doesn’t throw away
a priori without consider the eventuality that his value of
objective function can be useful.

3.2 Management of out of the box points

When a process finds a point out of his box, this point will
have to be communicated to the process that hold the box
in which lies that point. This communication might take
place in two ways: the process communicates the point
to the process interested or the process communicates the
point to the master process, which communicates it to
the process interested. The former approach, apparently
easier, needs that each process knows how the boxes are
shared between all slaves of first level, so, the master
should have to communicate all information concerning
the sharing of boxes to all processes, involving a large
communication overhead. The latter approach needs two
data transmissions instead of one, but it is , because only
the master has to know which process hold the box in
question, therefore, it isn’t necessary to communicate the
box assignments to the 1st level processes.

FIFO

M

I I I

II II II II II II

Structure of interprocess comunication

The figure 1 show the structure of tree-processes in

object. The node labelled with M is the master, the
nodes labelled with I are the slaves of 1st level and those
labelled with II are the slaves of 2nd level. Solid lines
depict bidirectional communication between parent and
children. On these channels (pipes) the parent send the
parameters to his sons (i.e the master process communi-
cates to the 1st level processes the respective subdomain
and the 1st level processes assign to the 1st level ones
the values where function must be evaluated). On the
same pipes children processes return the computation
results to their parent. Another communication channel,
using a FIFO, has been created to communicate to the
parent the points that lie in another box, such channel
is represented by dotted lines. Dotted line from 1st level
processes to FIFO indicate the flow of out of box points
to master (the master doesn’t need to know who is the
process sender). Dotted lines from master to sons show
the communication of new points to interested child. Such
information are in fact sent on the pipe because after the
initial parameter communication links between master to
1st level processes become idle, then each 1st level process
knows that all further arriving information is surely a new
point coordinates.

4 Numerical Results

In this section we report few numerical results obtained
applying the parallel method to some multimodal func-
tions used to test the efficiency of global optimization algo-
rithms. About the performance of the sequential Genetic-
Price algorithm in [4] results obtained in a wide selection of
test problems are reported, demonstrating as the new al-
gorithm overcomes both classical CRS and GA approach.
Over all examples considered the new algorithm gives im-
provements in the value of function at minimum and sav-
ing of computer time in the 30% to 60% range over the
best performing method.

For such reason in the following experiments the par-
allel implementation is compared only with the sequen-
tial version of the same algorithm, in fact the computer
code used is highly scalable and the sequential version is
generated simply putting the input parameter that rep-
resents the number of processor used to one. Moreover
the dynamic process allocation of MOSIX allows to allo-
cate a number of processes greater than the number of
actual processors. In our tests the number of concurrent
processes was limited by the number of physical processors
available and the migration utility of MOSIX was used to
assure that all concurrent processes are scheduled to run
on different processors. Note that, in spite of the scala-
bility of the code, the parallel algorithm is really different
from the sequential one. It isn’t a parallelization of par-
allelizable part of the sequential code. One can say that
there are several parallel processes cooperating to the so-
lution of the problem, any of that can expect aid from the
other, this characteristic gives us the hope for achieving a
superlinear speedup.

All presented results are obtained on a computing

4

cluster consisting of 10 computing units any of that is
equipped by two AMD Athlon MP2400 processors, the
operating system installed was Red Hat Linux version 9.0
with SMP kernel 2.4.21 with the kernel extension OPEN-
MOSIX ver.2.0. In all the experiments reported we repre-
sent results on tables, the numerical results are averaged
over ten independent runs of the algorithm with different
random seed initialization. The total number of points
maintained by the CRS algorithm (i.e. number of individ-
uals of the population in the GA) was 3000. The symbols
reported on numerical tables have the following meaning:

NP= processors number,
FV= mean function value,
FE= mean number of function evaluation,
T= mean CPU time.

Experiment 1: the Shubert function [9]

f(x1, x2) = −
5X

j=1

j [sin ((j + 1)x1 + j) + sin ((j + 1)x2 + j)]

fmin = −24.062499,
400 local minima, 9 global minima

Xmin =

½∙
a
a

¸
,

∙
a
b

¸
,

∙
a
c

¸
,

∙
b
a

¸
,∙

b
b

¸
,

∙
b
c

¸
,

∙
c
a

¸
,

∙
c
b

¸
,

∙
c
c

¸¾
a = −6.774576, b = −0.491391, c = 5.791794

n = 2, D = [−100, 100]2 results are reported on table 1

N.P FV FE T

1 -24.060575 831418 2449
4 -24.062499 4017163 156
9 -24.062499 1278108 23.7
16 -24.062499 1039006 16.2

(table 1)

Experiment 2: The exponential function [3]

f(x1, ..., xn) = e−
n
i=1 x

2
i

2

fmin =
1

e
n
2
,

2n local (and global) minima

xmin = [±1,±1, ...,±1]T

n = 4,D = [−1, 1]n results are reported on table 2 (row
marked 16 report data obtained with 16 processors split-
ting the domain across two dimensions, and row 16∗ do-
main splitted across all 4 dimension).

N.P FV FE T
1 0.14834654018 212433 2431
4 0.1353352832 435060 44.1
9 0.1353352832 366777 36.6
16 0.1353352832 288622 27.1
16∗ 0.1353352832 186801 18.6

(table 2)

Experiment 3: The Hansen function. [9]

f(x1, x2) =
5X

i=1

i cos ((i− 1)x1 + i)
5X

i=1

j cos ((j − 1)x2 + j)

fmin = −176.541793,
176 local minima 9 global minima

Xmin =

½∙
a
d

¸
,

∙
a
e

¸
,

∙
a
f

¸
,

∙
b
d

¸
,∙

b
e

¸
,

∙
b
f

¸
,

∙
c
d

¸
,

∙
c
e

¸
,

∙
c
f

¸¾
a = −7.589893, b = −1.306708, c = 4.976478
d = −7.708314, e = −1.425128, f = 4.858057

n = 2, and is considered on D = [−100, 100]2, results for
such function are reported in table table 3

N.P FV FE T
1 -176.53385885374 815906 2435.4
4 -176.5417931367 3540380 55.9
9 -176.5417931367 1466601 22.2
16 -176.5417931367 880913 13.9

(table 3)

Experiment 4: The extended Rosenbrock function [16]
(unimodal)

f(x) =
n−1X
i=1

n
(xi − 1)2 + 100(x2i − xi+1)

2
o

fmin = 0,

xmin = [1, 1, ..., 1]
T ,

table 4 report results with n = 8,D = [−1000, 1000]n

N.P FV FE T
1 0 415690 23.15
4 0 222069 18.79
9 0 264830 25.43
16 0 241743 25.67

(table 4)

4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

N: number of processors

Sp
ee

du
p

S=
Ts

/T
p

Shubert
Exponential
Hansen

Speedups for experiments 1,2 and 3.

5

The new parallel implementation seems to give very
high acceleration to solve complex optimization of mul-
timodal functions. The speedup values: S(N) = Ts

Tp(N)

where (Ts =CPU time of sequential alg and Tp(N) =CPU
time of parallel alg. whit N processors) evaluated for
experiments 1,2 and 3, and reported in fig 2 are quite
impressive. The behavior, similar in all cases, shows that
the saving in computational effort is dramatic just passing
for the sequential to the parallel approach (values with
N = 4), then increase in a substantially linear fashion
with the increasing the processor number. This means
that we can look forward for good performances even on
small computing clusters.

4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N: number of processors

Sp
ee

du
p

S=
Ts

/T
p

Extended Rosenbrock

Speedups for experiment 4.

The gain in performances of parallel algorithm over
the sequential one is more evident as more complex is the
problem, in the case of the simple Rosenbrock problem the
gain using the parallel algorithm is negligible, moreover
when the number of processors increases one can experi-
ence even a performance degradation. From the analysis
of the speedup values for the experiment 4 it is clear that
there is no advantage of the parallel algorithm. But in this
case there are several local optimization methods more ef-
fective to solve the problem.

5. Conclusions

We presented a parallel implementation of a novel algo-
rithm for global optimization. The algorithm in its sequen-
tial formulation is very attractive because retains good
features of both the CRS and the GA approaches from
which it is derived. In the case of very complex objec-
tive functions and very stringent due time requirements,
as in real time data analysis problems, the computer time
needed to find the global minimum can be a serious prob-
lem, computing time can be reduced using special purpose
supercomputers but such an approach is very expensive. A
cost effective approach to such problem is the parallel so-
lution by means of a cluster of general purpose computers
in a distributed computing environment. The algorithm

proposed is well suited to be adapted to such type of com-
puting environment, in fact the combination of an intelli-
gent structure of interprocess data communication and of
a state of the art load scheduling and balancing tool as
MOSIX give extremely good experimental results.

References

[1] A. Barak, O. La’addan, A. Shiloh, Scal-
able Cluster Computing with MOSIX for LINUX,
http://www.mosix.cs.huji.ac.il

[2] F. Barone, L. Milano and G. Russo, in Active Close
Binaries, ed. C. Ibanoglu, (Kluwer, Dordrecht 1990) 161-
188.

[3] P. Brachetti, M. De Felice Ciccoli, G. Di Pillo and
S. Lucidi, Journal of Global Optimization, 10, (1997) 165-
184

[4] M. Bresco, G. Raiconi, F. Barone, R. De Rosa, L.
Milano, Genetic approach helps to speed classical Price’s
algorithm for global optimization, in Soft Computing Jour-
nal, (to appear), 2004..

[5] D.E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning, (Addison Welsey, New
York 1989).

[6] R. Horst and P.M. Pardalos (eds.), Handbook of
GlobalOptimization , (Kluwer, Dordrecht 1995)

[7] L. Milano, F. Barone, M. Milano, Phys. Review
D, 55, (1997), 4537-4554

[8] J.Mockus, Bayesian Approach to Global Optimiza-
tion, (Kluwer, Dordrecht 1989)

[9] http://www.imm.dtu.dk/~km/GlobOpt/testex
/testproblems.htm

[10] P. M Pardalos, A. Migdalas, R. E. Burkard (eds.),
Combinatorial and Global Optimization, (World Scientific
Pub. Co. Inc. 2002)

[11] J. D. Pinter, Global Optimization in Action,
(Kluwer, Dordrecht 1995)

[12] W.L. Price, Computer Jour., 20, (1979) 367-370.

[13] W.L. Price, Jouranal of Optimization Theory and
Applications, 40, (1983) 333-348.

[14] Strongin R.G., Sergeyev Ya.D. Global optimiza-
tion with non-convex constraints: Sequential and paral-
lel algorithms, (Kluwer Academic Publishers, Dordrecht,
2000)

[15] F. Shoen, Journal of Global Optimization, 1,
(1991) 207-228.

[16] M. A. Wolfe, Numerical Methods for Uncon-
strained Optimization, (Van Nostrand Rehinold Company,
N.Y. 1978).

6

