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Abstract:-In this paper a parabolic equation with memory operator is

considered. CNN model for such equation is made. Dynamic behavior
of the CNN model is studied using describing function method.

Traveling wave solutions are proved for the CNN model. An example
of one-dimensional wave in medium with memory arising in classical

mechanics is presented.
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1. Introduction

The main aim of this paper is to study
a class of first order parabolic equation,
in which a memory operator occurs in the
sourse term [5]:

∂u

∂t
− ∆u+ F(u) = 0, in Q, (1)

where we assume that Ω ⊂ RN , (N ≥ 1)
is an open set of Lipschitz class, fix T > 0
and set Q := Ω×]0, T [. The unknown u
may represent the temperature and F(u)-
a space distribution of thermostats, char-
acterized by continuous hysteresis cycles.

We will search for traveling wave solu-
tions of such model which leads to study
of ordinary differential equations with
hysteresis. In this connection we will con-
struct CNN model of (1) and we will study
its dynamical behavior using describing

function method. Finally we will present
a CNN model of one- dimensional wave in
medium with memory arising in classical
mechanics.

2. CNN Model for
Equation with Memory

For solving the parabolic equation with
memory (1) spatial discretization has to
be applied. The partial differential equa-
tion is transformed into a system of ordi-
nary differential equations which is identi-
fied as the state equations of a CNN with
appropriate templates.

There are several ways to approximate
the Laplacian operator ∆ in discrete space
by a CNN synaptic law with an appropri-
ate A-template [4]. For example we can
have:



a). one-dimensional discretized Lapla-
cian template

A1 : (1,−2, 1); (2)

b). two-dimensional discretized Lapla-
cian template:

A2 :


 0 1 0

1 −4 1
0 1 0


 , (3)

Let us consider an autonomous CNN
with N × N cells lined up in a row and
let compare (2) with the state equation
of the autonomous CNN. Then we obtain
the following templates:

A = [1,−2, 1] (4)

Ã = [0, −F(uj), , 0],

1 ≤ j ≤M = N.N.

We will take the memory operator F(uj)
to be a real hysteresis functional defined
by an ”upper” function FU and a ”lower”
function FL (Fig.1). Functions FU and
FL are real valued, piecewise continuous,
differentiable functions. Moreover, h(vxij)
is odd in the sense that

FU(uj) = −FL(−uj).
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Figure 1: Hysteresis nonlinearity

For the output function f of our model
we will take the standard sigmoid func-
tion. We will take periodic boundary con-
ditions:

u0 = uM , (5)

uM+1 = u1,

which make the array circular [4].

3. Dynamic Behavior of
the CNN Model

Let us take for simplicity the follow-

ing hysteresis functional F(uj) =
u3

j

3
−uj.

Then our CNN model can be written in
the following form:

duj

dt
= uj−1−2uj +uj+1− (

u3
j

3
−uj), (6)

1 ≤ j ≤M = N.N

or

duj

dt
= uj−1 − uj − uj+1 + n(uj), (7)

where the nonlinearity is n(uj) = −u3
j

3
.

In this paper we investigate the dy-
namic behavior of a CNN model (7) by
use of Harmonic Balance Method well
known in control theory and in the study
of electronic oscillators [3] as describing
function method. The method is based on
the fact that all cells in CNN are identical
[1], and therefore by introducing a suit-
able double transform, the network can
be reduced to a scalar Lur’e scheme [3].

We are looking now for possible peri-
odic solutions of the system (7) of the
form.

UΩ0(ω0) = Um0sin(ω0t+ jΩ0). (8)

Then we can approximate the output in
the same way:

VΩ0(ω0) = Vm0sin(ω0t+ jΩ0).



According to the describing function
method we take the first harmonics, i.e.
j = 0 ⇒

UΩ0(ω0) = Um0sinω0t, (9)

VΩ0(ω0) = Vm0sinω0t, (10)

and we can find the amplitude Vm0 of the
output:

Vm0 =
1

π

∫ π

−π
N(Um0sinψ)sinψ dψ =

(11)

= −U
3
m0

4
.

Suppose that our CNN model (7) is a
finite circular array of M cells. For this
case we have finite set of frequences:

Ω0 =
2πk

M
, 0 ≤ k ≤M − 1. (12)

According to the describing function
method [3], if for a given value of Ω0 from
(12) we can find ω0 and Um0 , then we can
predict the existence of periodic solution
of our CNN model for the parabolic equa-
tion (1). Therefore, we have:

Proposition 1 CNN model (7), with cir-
cular array of M = N.N cells and peri-
odic boundary conditions

u0(t) ≡ uM(t),

uM+1 ≡ u1(t),

has periodic solution with period T0 =
2π/ω0 and amplitude Um0 for all Ω0 =
2πk
M

, 0 ≤ k ≤M − 1.

Remark 1. According to the Poincare-
Bendixon theorem [3] applied to our case,
only a set of initial conditions of mea-
sure zero will reach a periodic solution,
all other trajectories will converge to an
equilibrium point.
Remark 2. (Regulazing effect of hys-
teresis) Proposition 1 shows that the pres-
ence of hysteresis has a regulazing effect in

nonlinear wave propagation, in essential
contrast to the possible occurance of dis-
continuous solutions in the form of shock
waves that can develop for the nonlinear
wave equation, that is, in the case of non-
linear superposition operator.

As we said in the begining we will
search for traveling wave solution of (1).
We look for a solution in the form:
u(x, t) = û(x+ct), where c is the speed of
the wave. It is known [5] that for a trav-
eling wave front represented by u(x, t) is
said to be a wave front if

u(x, t) → k1 as t→ −∞,

u(x, t) → k2 as t→ ∞,

for some constants k1 and k2.
According to the obtained results, there

exist stable periodic solutions of our CNN
model (7) and such that limt→±∞uj(t) =
const., 1 ≤ j ≤ M . Therefore we have
proved existence of traveling wave solu-
tions with period T0 = 2π/ω0 and the
wave front Um0 .

4. Nonlinear Waves in
Medium with Memory

This section deals with one-dimensional
waves in medium with memory. Following
[2] we shall denote by x a co-ordinate of a
point belonging to a solid body, by t- the
time variable, by ε- the deformation, by
σ- the tension and b

ε(t) =
∫ t

−∞

√
1 +K∗

√
a′(σ) (13)

√
1 +K∗

√
a′(σ)σ

′
t dt.

In the previous equality K∗ is the con-
volution operator:

K∗u(t) =
∫ t

−∞
K(t− τ)u(τ) dτ, (14)



√
1 +K∗ stands for the development of

the operator 1 + K∗ into a power series
and the integral operator

√
1 +K∗ as well

as the multiplication operator a
′
(σ) are

acting on the function σ
′
t.

It is well known from classical mechan-
ics that the next equation holds:

∂2ε

∂t2
− ∂2σ

∂x2
= 0, (15)

supposing ε and σ to be smooth functions
of (t, x).

Putting (
√

1 +K∗)−1 = 1 − Φ∗,

Φ∗u =
∫ t

−∞
Φ(t− τ)u(τ) dτ

we see that each smooth solution σ of the
nonlinear integro-differential equation

√
a′(σ)

∂σ

∂t
± (1 − Φ∗)

∂σ

∂x
= 0, σ ∈ C2

(16)

(x ≥ 0)

will satisfy (15) with ε given by (13).
According to the mechanical terminol-

ogy the function Φ is called “kernel of
heredity”. Assume that

Φ(t) = ke−kt, k > 0.

So we have that a wave of tension, prop-
agating “to the right-hand side” is given
by next nonlinear first order equation:

∂

∂t

∫ σ(t,x)

0

√
a′(λ) dλ+

∂σ

∂x
+ (17)

k
∫ σ(t,x)

0

√
a′(λ) dλ) = 0,

σ(t, 0) = σ0(t), σ0(t) ≡ 0, t ≤ 0, σ = 0,

for x ≥ 0, t ≤ 0, σ0 ∈ C2(R).

Let us make the change of the unknown
function

w =
∫ σ

0

√
a′(λ) dλ. (18)

Obviously, w
′
=

√
a′ > 0 ⇒ there exists

ϕ ∈ C2, such that

σ = ϕ(w). (19)

Then (17) will be rewritten in the form

∂w

∂t
+ ϕ

′
(w)

∂w

∂x
+ kw = 0, (20)

w(t, 0) =
∫ σ0(t)

0

√
a′(λ) dλ ≡ w0(t),

w0(t) ≡ 0 for t ≤ 0, w0 ∈ C2(R), w = 0
for x ≥ 0, t ≤ 0.

Let us consider equation (20) in the fol-
lowing form:

∂w

∂t
= −ϕ′

(w)
∂w

∂x
− kw. (21)

We map w(x, t) into a CNN layer such
that the state voltage of a CNN cell xij(t)
at a grid point (i, j) is associated with
w(ih, t), h = ∆x. Hence, the following
CNN model is obtained:

dwi

dt
= −ϕ′

(wi)
(wi+1 − wi−1)

h
− kwi.

(22)

If we compare the above equation with
the state equation of nonlinear CNN we
directly find the templates:

Â = [
ϕ

′

h
− k − ϕ

′

h
].

We will consider the following examples
for our CNN model (22):

Let a(λ) = e2λ

2
− 1

2
. Then w =∫ σ

0

√
a′dλ = eσ − 1 ⇒ σ = ln(w + 1) and

ϕ
′
(w) = 1

w+1
. The initial condition is:

w0 =

{
0, t ≤ 0,
1 − cos t, t > 0.



Figure 2: Nonlinear wave model
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