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Abstract: - Aim of this work is to present two neural network models for detection of velocity, orientation and 
direction of movement in visual images. Both models mimic a single hypercolumn in the primary visual cortex. 
They differ as to the arrangement of inhibitory circuitry: in the first (“anti-phase inhibition model”) inhibition 
is in phase opposition with excitation, but with a similar orientation tuning; in the second (“in-phase inhibition 
model”), inhibition is in phase with excitation, but with larger orientation tuning. Simulation results, performed 
by using bars with different length and motion direction, show that the models can explain velocity tuning, 
orientation tuning and direction selectivity of simple cells quite well with a suitable choice of intracortical 
synapses. The models can be used to test the hypothesis on the disposition of cortical synapses, and could 
provide practical tools in order to carry out a primary analysis of the movement detection of individual points in 
a visual scene. 
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1   Introduction 

Detection of the velocity of movement of 
individual points is one of the fundamental tasks that 
any vision system must be able to cope with. In the 
primary visual cortex (V1), this task is first 
performed by the so-called “simple cells”, which are 
sensitive to orientation, velocity and direction of 
motion of input stimuli within a particular region of 
the visual space (named, the receptive field, RF). 
Analysis of the neural circuits by which the cerebral 
cortex may detect movement is of the primary 
importance, not only to reach a deeper 
understanding of the neurophysiology of V1, but 
also to design artificial neural networks devoted to 
vision problems. 
In the physiological literature, the response of simple 
cells has been studied, by using different alternative 
stimuli: they include drifting gratings of various 
orientation and spatial and temporal frequencies [1], 
moving bars [2,3], or flashing bars [4,5,6]. These 
stimuli are aimed at analysing the main spatio-
temporal properties of cortical visual cells (such as 
orientation and direction preference, velocity tuning, 
or the organisation of the receptive field) and at 
discovering the possible mechanisms (thalamic or 
cortical) involved in their aetiology. Despite the 
great number of experimental studies performed, and 
mathematical models proposed, the exact 
intracortical circuit responsible for velocity 
selectivity is still largely hypothetical. 

The aim of this work is to investigate the 
properties of two alternative neural network models 
for velocity sensitivity and direction selectivity, 
based on physiological considerations. These models 
share several fundamental aspects, and differ only as 
to the particular arrangement of intracortical 
inhibition. This choice is justified by the observation 
that the exact arrangement of inhibition in the 
primary visual cortex is still a matter of debate, and 
alternative intracortical circuits have been proposed, 
without definite conclusions.  

This study has been conceived with two 
fundamental purposes: i) to reach a deeper 
understanding on the possible mechanisms by which 
the primary visual cortex extracts some essential 
features of the input image, such as orientation, 
velocity, direction. This may be important to 
improve neurophysiological knowledge; ii) to 
represent a possible initial step usable within 
artificial vision systems. For instance, the proposed 
neural networks may be exploited as a detector of 
movement, able to signal the existence of moving 
objects with a particular orientation, a particular 
direction, and within a specific velocity range. 

The paper is structured as follows. In the 
subsequent section, the main aspects of the two 
models are quantitatively presented, laying emphasis 
on their neurophysiologic justifications. The third 
section presents the results obtained by stimulating 
the models with moving bars having different 
velocities, orientation and length. Finally, results are 



discussed in the last section, laying emphasis on the 
differences between the two models and on their 
possible use within artificial systems for movement 
detection. 
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The parameters in (2), (3) have the following 
meaning: r1 and r2 are the radii of the center and 
surround, respectively; A1 and A2 set the strength of 
the response in the center and surround. The values 
for the parameters K1, c1, t01, n1, K2, c2, t02, n2, c01, c02 
are given to fit experimental data about the LGN 
cells impulsive response [7]. Finally, the response of 
each LGN cell (Eq.1) is passed through a non-linear 
function, which exhibits lower threshold and upper 
saturation, according to the literature [8]. 

 
 
2   Problem Formulation 

In the present paper two different models have 
been implemented (in-phase and anti-phase model) 
which differ as to the disposition of the intracortical 
inhibitory circuit. The models consider the 
architecture of a single hypercolumn, composed of 
360 excitatory neurons and 90 inhibitory 
interneurons, parameterized by their preferred 
orientation. Two orientation angles differing by 180 
degrees identify opposite direction of movements. In 
the models the output of neurons is represented by 
the firing rate (spikes/s).  

The RF of each simple cell in the hypercolumn is 
obtained from the convergence of excitatory input 
from 15 LGN cells, disposed to constitute a regular 
lattice oriented along the preferred orientation of the 
cell (Fig.1). 

Each model consists of two consecutive layers: a 
first layer simulates the response of the thalamic 
cells in the lateral geniculate nucleus (LGN), which 
represents the first step in the visual processing 
stream. A second layer mimics the elaboration in V1. 
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The LGN includes both ON-center and OFF-center 
cells. Their response is computed as a function of 
normalized luminance. We assume that these cells 
have a separable spatio-temporal RF. Hence, this is 
described as the product of a spatial term and a 
temporal term, i.e. 
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Fig.1. a) Thalamic input to a simple cell, arising from 15 
thalamic cells arranged in a regular lattice. b) Thalamic 
impulsive response (normalized) for neurons belonging to 
the three different subfields. 

 
where t is time, RFxy(i,j,t) represents the spatio-
temporal RF of a thalamic cell centered at position 
x,y of the retina, φx,y(i,j) is its spatial component and 
γ(t) the temporal component. 

 
The strength of synapses from these LGN cells to 

the target cell are described by means of a Gabor 
function, to have cells with a symmetric RF, 
composed of a central ON region plus two lateral OFF 
regions (or viceversa). All the parameters are 
assigned in acceptable agreement with physiological 
data [8], [9], [10].  

The spatial component of the RF at the 
coordinates (i,j) is described as the difference 
between two concentric Gaussian functions, having 
the same spatial constant in both directions. Hence 
for a LGN cell at position x, y: 
 

A basic assumption of both models is that the 
time lag in the impulse response of LGN cells (i.e., 
parameter Txy in Eq.3)) increases regularly from one-
subregion to the next . The temporal patterns shown 
in Fig.1b represent the impulse responses of the non 
lagged neurons (Txy=0 ms in (3)) for the upper 
subregion, and of two different lagged neurons 
(Txy=40 ms and Txy=80 ms) for the middle and lower 
subregions, respectively.  
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γ(t) describes the response to a light impulse at time 
t=0 by means of a biphasic curve. Txy is a time delay, 
which depends on the position of the LGN cell. 
Hence:  
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Kttγ  The convergence of the previous LGN responses 
determines an inseparable spatio-temporal RF . This 
causes a moderate direction preference for the 
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Figure 2. Cortical ON cell receptive fields: model result 
and experimental result [1]. Solid line: ON subfield; 
dashed line: OFF subfield. 
 
thalamic input to cortical cells. Fig. 2 shows the RF 
obtained from the model compared with an RF 
obtained from an experimental registration [1]. 
The previous portion of the model considers just 
feedforward excitation from the LGN. The cortical 
neurons, however, do not only receive the LGN 
input but also excitatory synapses from the other 
cortical cells in the hypercolumn, and the inhibitory 
synapses from inhibitory interneurons. In order to 
describe the cortical circuitry, the following 
equations have been used:  
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where V(θ,t) is the membrane potential of the 
cortical cell with orientation preference θ at time t, 
c(θ,t) is the output activity of the cortical cell at time 
t, ∆Vct(θ) is the change in membrane potential caused 
by the LGN input, ∆Vce(θ,t) and ∆Vci(θ,t) are the 
changes in membrane potential caused by excitatory 
and inhibitory intracortical connections, respectively. 
At equilibrium, the value of cortical cell activity is 
obtained by comparing the variation in membrane 
potential with a threshold, υ, using a single wave 
rectifier []+ which cuts negative values, and 
multiplying the value so obtained by a gain factor kc. 

In the model, intracortical excitation occurs via 
synaptic connections between neurons in the same 
hypercolumn, according to a feedback mechanism. 
Inhibition is realized through inhibitory interneurons, 
which modulate information from LGN cells to 
cortical cells via a feedforward mechanism (see Fig. 
3). Two different circuits have been implemented, 
which differ only as to the inhibitory circuit. In the 
first, named anti-phase model, thalamo-cortical 
excitation and feedforward inhibition are arranged 

according to a “push-pull” schema, that is the 
interneurons send their inhibition to a simple cell 
with similar orientation preference, but opposite 
spatial phase of the RF (i.e., ON vs. OFF and OFF vs. 
ON). Conversely, in the in-phase model the RF of the 
inhibitory interneuron has the same spatial phase and 
orientation as those of its target simple cells (Fig.3).  
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Fig.3. The arrangement of thalamic excitatory, cortical 
excitatory and cortical inhibitory inputs to simple cells in 
the hypercolumn. 
 

The output activity of the inhibitory interneurons 
depends only of the LGN input, that is they do not 
receive intracortical synapses. Hence, the activity of 
the inhibitory interneuron with orientation preference 
φ can be written, for anti-phase model, as:  
 

[ ]+−∆= υϕϕ ),(),( tVkti OFF
ctc

OFF    (6) 
 
where  is the LGN input in case of a RF with 
a central OFF region and two external ON regions. 

OFF
ctV∆

By contrast, the activity of the inhibitory 
interneuron for the in-phase model is computed as:  
 

[ ]+−∆= υϕϕ ),(),( tVkti ON
ctc

ON    (7) 
 
where  is the same as in Eq.4. ON

ctV∆
According to physiological data [11], the 

synaptic strength between cortical cells, and between 
cortical cells and inhibitory interneurons decrease 
exponentially with the distance in orientation 
preference: two neurons with similar orientation 
preference have a strong synaptic connection, 
whereas neurons with a large difference in 
orientation preference have a weak synaptic 
connection.  

Accordingly, for the anti-phase model the 
following equations have been used to compute the 
excitatory and inhibitory cortical inputs to a cortical 
cell with preferred orientation θ:  



        )()(),( ∑ −=∆
φ

φφθθ ON
ex

ON
ce cwtV   (8) 

        )()(),( ∑ −=∆
φ

φφθθ OFF
in

ON
ci iwtV   (9) 

 
For the in-phase model Eq.9 is replaced by a 

similar equation, in which the term iOFF(φ) is 
substituted by iON(φ). In Eqs.8 and 9 wex(θ-φ) 
represents the synapse between two excitatory 
neurons, and (θ-φ) is the distance between  the 
preferred orientations of the post-synaptic and pre-
synaptic cells; similarly, win(θ-φ) represents the 
synapse between an inhibitory interneuron and a 
target excitatory cortical cell (anti-phase: OFF vs ON; 
in-phase: ON vs ON).  
 
 
3 Problem Solution 

The mathematical model has been numerically 
solved on Pentium-based personal computer, using 
the software package Matlab®. We used the Euler 
method to integrate the differential equations. The 
input stimuli for the models are moving bars. In all 
cases, the response is evaluated as the maximal 
activity (spikes/s) evocated by the bar. 

The first simulations were performed to analyze 
the velocity tuning curve of the neurons in both 
models, i.e., their activity vs. the velocity of the bar. 
To this end, we used bars with an optimal length, 
optimal orientation, which move in the orthogonal 
direction (i.e., in the direction perpendicular to that 
of orientation). Moreover, the width of the bar is 
generally adjusted to obtain the best response. The 
bar starts its movement well outside the RF of the 
cell, and terminates only when the RF has been 
completely crossed. In our simulations, the previous 
characteristics have been mimicked by using a 
vertical bar with length 4 deg and width 0.5 deg. The 
results are presented in Fig.4, and compared with 
experimental data in the literature [2]. 
Results show that the neuron response in both 
models is “velocity-tuned” in type, i.e., the response 
is maximal at a given optimal velocity, but falls to 
zero at low-velocities and at high velocities. The 
lower cut-off velocity is similar in both models 
(about 1deg/s); the upper cut-off velocity is greater 
in the anti-phase model (about 30 deg/s) than in the 
in-phase model (about 10 deg/s); i.e., the second 
model exhibits greater velocity tuning. The effect of 
orientation of the bar, and of movement direction is 
presented in the upper panels of Fig.5 for the two 
direction of movement of the bar (from 0 to 360 
deg), which is always orthogonal to orientation. 
Hence, two angles which differ by 180 deg represent 
a bar with identical orientation, but moving in 

opposite directions. The Y-axis of this figure 
represents the response of a cell with optimal 
orientation 0 (or 180 deg), stimulated by bars with all 
possible orientations and directions of movements.  
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Figure 4. Velocity response curves: a) Anti-phase cortical 
output; b) In-phase cortical output. The gray lines 
represent experimental data [2], black lines represent 
model results. 
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Figure 5. Activity of simple cells vs. orientation (i.e., the 
orientation tuning curve) in response to a moving bars. In 
the upper panels the bar has optimal length (4 deg) and 
moves through the orthogonal direction (i.e., in the 
direction perpendicular to that of its orientation) at 
velocity of 11 deg/s. In the lower panels the bar has length 
equal to 0.5 deg (i.e., spot light) and moves at velocity of 
11 deg/s again. a) Anti-phase cortical output; b) In-phase 
cortical output. 
 

Two fundamental aspects in Fig.5 deserve a 
comment. First, both models exhibit orientation 
selectivity, i.e., the response is maximal when the bar 
has an optimal orientation, equal to the orientation of 
the RF (0 deg), but the response rapidly declines 
with orientation difference. Second, both models 
exhibit a significant direction preference, i.e., the 
response is much greater in one direction than in the 
opposite one. Direction selectivity is much stronger 



4 Conclusion in the anti-phase model, leading to almost complete 
suppression of the response in the non-preferred 
direction, than in the in-phase model.  

The present study aspires at developing a neural 
network model, based on physiological 
considerations, for detection of the main local 
features in an input image, with particular reference 
to movement. At present, the network implements a 
single hypercolumn in the primary cerebral cortex, 
i.e., it analyzes only a specific small portion of the 
image, with a dimension of the same order as the 
major axis of the receptive field (about 3 deg in the 
present work). Of course, the same elementary 
structure may be replicated at different points in the 
space, to have a complete description of the overall 
visual image. 

In order to quantify direction selectivity (i.e., the 
capacity to discriminate one direction of motion 
compared with the other one) an index commonly 
used in the literature is the direction index (DI), 
defined as follows: 
 

Direction Preferredin  response
Direction PreferredNon in  response -Direction  Preferredin  response

=DI  

 
According to this definition, a DI=1 means a perfect 
direction selectivity (i.e., a strong response for an 
optimally oriented bar moving in one direction, but 
complete suppression of the response in the opposite 
direction). DI=0 means no direction selectivity, i.e., 
equal response in both directions. Fig.6 describes DI 
as a function of the velocity of the bar. The left panel 
represents Direction Index for the thalamic input 
(i.e., the input from the first layer of Fig.1), while the 
middle and right panels show the DI for the two 
input exhibits just a moderate direction selectivity, 
caused by the presence of time lags in the response 
of the thalamic cells. This moderate direction 
selectivity is then sharpened by the intracortical 
circuitry. Direction selectivity increases with the 
velocity of the bar, reaching an optimum for bars 
having a velocity in the range 5-10 deg/s, which is 
the velocity of maximal response for the cells. 
Further simulations have been performed to analyze 
the effect of a reduction in the length of the bar. 
Results are shown in the lower panels of Fig.5. 
These panels show that the two models behave in a 
very different way in response to a short bar or a spot 
of light (length less than 0.5 deg, i.e., a bar which is 
completely contained within the central region of the 
RF). In the anti-phase model, a reduction in the 
length of the bar simply causes a widening of the 
orientation tuning curve, i.e., the cell looses a part of 
its orientation selectivity, and becomes less selective 
to an alteration in the orientation of the bar. By 
contrast, in the in-phase model, the response to a 
spot light is completely suppressed at the optimal 
orientation and, moreover, we have the appearance 
of a response to different directions of movement (0 
deg and 180 deg). In other words, in the in-phase 
model a spot light, provides its maximal response 
when it is moving along the major axis of the RF, 
along a direction orthogonal to the optimal direction 
for a long bar. The latter result agrees with 
experimental data by Worgotter and Eysel [4,5]. 

The results obtained with the use of long bars 
(i.e., bars with a length greater than the long axis of 
the RF) demonstrate that the network is able to 
detect several important properties of the local pixel, 
i.e.: i) the presence of local discontinuities, such as 
bars or edges. In fact, i no local discontinuity occurs, 
i.e., if luminance is locally constant, the 
contributions of the positive and negative subregions 
in the RF annul each others, and so the cells provide 
zero response; ii) the orientation of the bar or edge, 
and its direction of movement. As shown in Fig. 5, 
the neuron with maximal activity within the 
hypercolumn signals orientation of the bar; iii) the 
velocity of the bar or edge. The system responds 
only if the bar or edge moves with a specific 
velocity, within a tuned range (in this work within 
the range 2-10 deg/s). Lower or higher velocities are 
cut off. iv) The direction of movement. The system 
is able to discriminate whether the bar, with a given 
orientation, is moving in one direction or in the 
opposite one. For instance, the cell in Fig. 5 detects a 
direction 270 deg but cut the direction 90 deg. Of 
course, in order to have a cell that reveals the 
opposite direction, it is sufficient to invert the spatial 
disposition of the time lags in Fig. 1. 

Further simulations, not shown here, reveal that 
the network is able to detect both light bars on a dark 
background, or dark bars on a white background. 
Moreover, the response is largely independent of the 
contrast of the input image.  

Another important point, to be stressed, is that 
the velocity band of the cell (which, in the present 
work, is centered at about 5-8 deg/s) may be shifted 
to higher or lower velocities by changing the width 
of the receptive field. In fact, as observed in 
physiological experiments [2,3], a larger receptive 
field is generally associated with a velocity high-pass 
cell, i.e. a cell which responds better to high 
velocities, high temporal frequencies and low spatial 
frequencies of the input stimulus. This means that, 
by replicating the hypercolumn using different 
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dimensions of the RFs, it may be possible to realize a 
multi-scale analysis of the input image.  

At present, the proposed network is able to 
extract velocity, orientation and direction of 
movement at a given location, and at an assigned 
level of temporal and spatial frequency resolution. A 
subsequent, important problem is how to link the 
information from different hypercolumns (i.e., from 
different pixels in the image) to extract features at a 
higher-level. In our opinion, this may be achieved 
using lateral excitatory and inhibitory connections 
among hypercolumns, which realize contextual 
influences (similar to those hypothesized by the 
Gestalt psychology). For instance, excitatory 
connections may be implemented among neurons in 
different hypercolumns, which concur to the 
formation of a smooth contour (good continuity 
criterion) or between neurons which respond to the 
same direction and similar velocity of movement 
(common fate criterion). Hence, the present model 
may represent the basic block for the construction of 
more complex visual processing networks, able to 
extract higher-level features from the image. 

Finally, it is interesting to comment briefly on the 
differences between the two proposed models. Both 
models behave in a similar way in response to a long 
bar (where “long” means a dimension greater than 
the major axis of the RF, in this work: 3 deg). The 
only significant differences are that the anti-phase 
model exhibits greater direction selectivity, and a 
less-tuned velocity response (mainly imputable to a 
greater response at high-velocities, above 10 deg/s). 
By contrast, a striking difference between the two 
models is evident when using short bars or spots 
(where “short” means a dimension comparable to the 
width of the central sub-region in the RF; in this 
work: 0.6 deg). In the anti-phase model the preferred 
direction for a moving spot is equal to the preferred 

direction for long bar (both moving in the direction 
of the minor axis of the RF), but with a loss in 
orientation selectivity. By contrast, in the in-phase 
model the preferred direction for a spot is orthogonal 
to the preferred direction for a long bar (Fig. 5). The 
model responds better when a long bar is moving in 
the direction of the minor axis of the RF, but when a 
spot is moving in the direction of the major axis. 
However, the response to a spot is much smaller 
compared to the response to a long bar. Briefly, we 
can summarize these results saying that the anti-
phase model responds to moving long bars and spots 
in a similar way, whereas the in-phase model is able 
to distinguish long bars from spots (and partly 
suppress the last ones). It is interesting to observe 
that both pieces of behaviour have been observed in 
the physiological literature [2,3,6]. At present it is 
difficult to understand the implications, virtues and 
short-comings of these differences in real vision 
problems.  

In conclusion, we presented neural network 
models for the detection of the main local properties 
of an image. The models replicate, although in an 
idealized manner, some important properties of the 
early visual processing pathway (LGN and V1). 
Simulations show that the networks are able to 
detect orientation, velocity and direction of a 
moving bar or edge. Integration of several similar 
networks, to accomplish a multi-scale resolution, 
and to realize contextual influences, may be the 
natural evolution of this study 
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