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Abstract. The analysis of data sets of unknown characteristics usually demands that subsets (or clusters) of the data are 
identified in such a way that the members of any one such cluster display common (in some sense) characteristics. In 
order to do this we must determine a) The number of clusters, b) The clusters themselves and c) The labeling of every 
element in the data set such that each element belongs uniquely to one of the clusters. In a previous work [1] we 
discussed an algorithm which allowed us to solve (b) and (c) (assuming that (a) is given). Further, we also showed that 
the so-called labeling problem may be solved by minimizing an adequate measure of distance. The metrics discussed 
relied on a homogeneous distribution of the samples. In this paper we discuss several metrics as applied to self-
organizing maps (SOMs) which make the said consideration unnecessary and, therefore, generalize our past method. 
Furthermore, the new metrics improve on our previous results. We also discuss the minimization (genetic) algorithm 
(GA) and offer some results derived from its application. 
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1 Introduction 
There are several ways to attempt the identification of 
clusters in a set of data [2], [3], [4]. If we have 
information regarding the source of the data we may 
apply classical and/or heuristic methods with relative 
success [5]. Here, however, we assume that nothing is 
known about the data under study and apply the 
method originally proposed by Kohonen [6] which 
originates the so-called self-organizing maps (SOM). 
In this method, basically, a set of vectors (or 
�neurons�) η  is defined. The cardinality of η  ( η ) is 
typically smaller than that of the objects in δ  (the data 
set) i.e. δη ≤  . The dimensionality of every vector 
in δ is determined by the number of features (ϕ  ) of 
each object and every such object is, thus, defined in a 
ϕ -dimensional  space. The neurons in a self-
organizing map are simultaneously defined on two 
spaces: a) A   ϕ -dimensional space of features and b) 
A �geographic� map of  γ  dimensions (typically  γ = 2 
or  γ = 3). The training algorithm then operates on the 
neurons in a way such that neighboring neurons inγ  
space (hence the name �SOM�) correspond to elements 

which share some (possibly non-linear) attributes in δ  
space. Throughout this process it is relatively simple to 
overcome a priori limitations present in methods which 
rely on classical measures of distance (such as 
Euclidean or Mahalanobis� [7]). Once a set of neurons 
is trained (i.e. once its coordinates in  space are 
determined), however, one is faced with the problem of 
finding the boundaries between the neurons in a SOM 
which distinguish one cluster from another. A simple 
example will illustrate this fact. Assume that δ =200, 
ϕ =4, η =16, γ =2 and  that the (known) number of 
classes (C) is 3. Let us further assume that through 
some yet unspecified method the neurons 
corresponding to each of these 3 classes has been 
found, yielding a map as in Figure 1. Notice that, by 
definition, all neurons for C = i  (i = 1, 2, 3) are 
�physically� close in a euclidean sense. The process of 
assigning a label to every group of clustered neurons 
usually consists of setting a class number for every 
neuron from a previously known classification. In our 
example the data would assume a form analogous to 
the one shown in Table 1. In this table the heading 
�F1� to �F4� denote features 1 to 4; class 1 consists of 
k-1 elements, class 2 of m-k and class 3 of 200-m 



 

elements, respectively. There are alternative ways of  
displaying class membership but we will adhere to the 
one illustrated. When the Ci columns are known, other 
unknown elements which stem from the same source 
(H) giving rise to δ  may be classified successfully, as 
has been shown in the past [8]. 
 

 
Fig. 1.  A Labeled SOM with 3 classes 

 
In the absence of the Ci columns shown in Table 1, one 
must resort to some method which assigns class 
membership to every element in δ , so as to achieve a 
similar tabular structure. In the example above there 
are 3200 (roughly equivalent to 1095) possible 
assignments. The problem that we would like to solve 
may be simply stated as follows: Given a table such as 
Table 1 but lacking the data corresponding to the class 
columns, what is the best way to fill in these columns 
such that adequate clustering is achieved? We may 
encode any assignment as a string S of size 
δ consisting of a set of numbers between 1 and C. For 

example, if  C=3 and δ =20, the string 
S1=12312312312312332132 is one of the possible 
solutions; the string S2=22211133333322211123 is 
another, and so on. What we would like to answer is: 
which of the two possible solutions in our example is 
better? 
 
 
 
 
 
 
 
 
 
 

Table 1. Labeling Data 

 
In order to do this we must define a measure of 
goodness; a metric by which to judge the hypothetical 
solutions. The first step is to calculate a distance matrix 
∆ , thus: 
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 Clearly, any exhaustive enumerative approach is out of 
the question. We will, therefore, appeal to a genetic 
algorithm (GA) to find an approximation to the best 
possible assignment. The detailed description of the 
algorithm we used may be found in [1, 10, 11]. 
However, before using any optimization method we 
must first define a measure of fitness of an assignment. 
One of the contributions of this paper is the 
identification of a family of adequate metrics. 
 The rest of the paper is organized as follows. In 
section 2 we discuss the metrics based on the 
mathematical postulates: their advantages and 
shortcomings. In section 3 we describe several new 
metrics based on the topological postulates: their 
advantages over the former. In section 4 we describe 
the application of the method to a set of classification 
problems and the results we obtained. Finally, in 
section 5 we  offer our conclusions and point out future 
lines of research. 

2  Mathematical Postulates 
To achieve a proper fitness function we adhere to what 
we have called the mathematical postulates. They rely, 
basically, on the mathematical properties of the 
labeling matrix. To this effect we established the first 
of these postulates, which reads: 
 



 

Postulate 1:  �For every set δ  it is desirable that the 
groups which conform it are as different as possible 
amongst themselves�. 
 

Following this postulate we expect that, in the 
labeling matrix ∆ , a larger difference between the 
maximum and the rest of the elements of every line is a 
desirable property. Therefore, a criterion to distinguish 
�good� candidate labelings is expressed in the 
following metric: 

 
 
For every line in matrix∆  the element emax 
=[max(∆ jk)] is selected; the euclidean distance 
between emax and all the remaining elements of∆ j is 
calculated. This distance is accumulated in a variable 
corresponding to the �winning� class. Once this 
procedure is applied to all the rows of the matrix, the 
norm is the summation of all the aforementioned 
variables where each one of the variables is divided by 
the rows associated to its class. If we analyze carefully 
D4 we can see that it easily determines those matrices 
where the distance between groups is larger. However, 
its maximum is attained when all the m neurons of the 
map correspond to only one of the n groups (which is, 
in general, incorrect). Therefore, a further postulate 
was introduced: 
 
Postulate 2: �For all δ  it is desirable that all its 
elements are homogeneously distributed between the 
groups.� 
 
In this context, a homogeneous data set is one in which 
the cardinality of a group in the set is the same as the 
cardinality of any and all the remaining groups to 
within a specified percentage. In [1] it was determined 
that when the number of elements in every group was 
the same with 5% tolerance, the GA was able to cope 
with the test problems and automatically find the 
required clusters with an accuracy on the order of 80%. 
The metric where postulate 2 was included will be 
denoted by D4H.  

But homogenous data are not to be taken for 
granted. And considering this non-homogeneous 
possible case we defined new metric (which we denote 
by D4NH) in which the postulated homogeneity is no 

longer considered. To do this we notice that there is a 
condition which may be incorporated in alternative 
metrics: The fact that any candidate solution should 
coincide with the calculated class matrix. To see why 
we illustrate with a simple example. Assume that γ =2, 
η =16 and C=3. Assume, further, that∆  is as shown in 

table 2. 
 
Table 1. An example of a distance matrix 

i j Distance 
01 

Distance 
02 

Distance 
03 

Class 

1 1 47.73 67.15 99.76 3 
1 2 58.28 85.01 79.50 2 
1 3 70.27 105.94 57.24 2 
1 4 69.03 122.05 47.80 2 
2 1 56.28 85.54 81.61 2 
2 2 66.59 95.54 67.45 2 
2 3 80.28 108.29 51.46 2 
2 4 77.51 116.76 42.27 2 
3 1 60.68 103.41 62.58 2 
3 2 78.91 101.29 56.32 2 
3 3 101.24 96.91 45.99 1 
3 4 110.48 91.18 39.93 1 
4 1 75.30 100.83 50.09 2 
4 2 92.64 96.45 49.06 2 
4 3 119.24 84.03 42.65 1 
4 4 133.27 66.98 36.19 1 

 
In Table 2, class Im is assigned to neuron m from  
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Denoting by Σ Im the class assignment derived from (3) 
and by Σ D4 the class assignment (such as the one 
illustrated in table 2) derived from string S we 
immediately see that Σ D4 = f(S, γ)η,,  and that the class 
assignment Σ D4 derived from the best string SD4 is not 
necessarily consistent with (3). Therefore, we introduce 
a new metric: 

(4)
2144
µε KK

H
D

NH
D −−=  

 
where ε  represents the number of elements in which 
Σ D4 differs from Σ Im; µ  is the number of classes for 
which no neuron is assigned and K1 is a penalty which 
has to be large enough to ensure that if Σ D4 = Σ Im it 
will receive a much higher fitness value than the case 
Σ D4 ≠ Σ Im. By the same token, K2 must be chosen 



 

such that at least one neuron is assigned to each group. 
In D4NH we abandon postulate 2 and keep D4H as a tie 
breaking criterion when ε =0 for more than one Si.  

3 Topological Postulates 

Although working with D4NH removes the need for the 
second mathematical postulate, the relatively modest 
results obtained (for which see section 5) lead us to 
explore a different approach, based on topological 
considerations regarding the SOM. These we have 
called the topological postulates. These postulates are 
derived from some of the intrinsic characteristics of the 
SOM�s training algorithm. 
 
Postulate 1. �For every SOM it is desirable that each 
and every one of its nodes has been labeled such that 
self-organization is maintained.� 
 
Postulate 2. �For each class Ci in δ  it is desirable that 
the neurons in the trained SOM corresponding to Ci be 
as close(in a Euclidean sense) as possible from one 
another.� 
 
Postulate 3. �Given a trained SOM and C  classes, for 
each class Ck  in δ  it is desirable that the neurons in 
class as far away (in a Euclidean sense) from all the 
remaining classes Ci (i=1,�, C , i ≠ k).� 
 
 In order to describe the topological metrics 
derived from the postulates above we now define a 
kernel which is applied in general in the metrics to be 
discussed: 
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Where •   represents  the  Euclidean distance and ixr  

is the vector associated to the i-th neuron in the SOM. 
Notice that the distance may be calculated in γ -space  
or in ϕ -space, and that distance may be defined for 
neurons which belong to the same cluster (internal or 
τ  distance) or to different clusters (external or ξ  
distance). The average defined in (5) corresponds to 
internal or external neurons depending  on whether we 
wish to measure relationships of neurons within one 

cluster or, on the contrary, if we wish to measure the 
distance between clusters. 
 For the purposes of the following discussion, 
we will use two subindices associated to the kernel. 
The first subindex will be either ξ  or  τ  denoting 
external and internal distances, respectively. The 
second subindex, on the other hand, will be either ϕ  or  
γ  depending on whether the distance is calculated in 
the space of features or, on the contrary, on the 
Cartesian space of  the neurons. For instance, by ϕτK  
we  denote the distance of a set of neurons within a 
class as measured in the space of features; likewise, by 

ϕξK  we denote the distance between classes of 
neurons. With this nomenclature we are in the position 
to define 4 new metrics which we denote as D5T, D6T, 
D7T and D8T, as follows: 
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In (6)-(9), the symbol �p � means �Evaluate the 
denominator of the expression  to the right of  �p �. If 
it is not zero, assign the value of the quotient to the 
metric; otherwise, assign a value zero to it�. 
 We stress the fact that these metrics are the 
ones which stood out after trying out some of the many 
combinations amenable to testing. As the reader can 
see, here we are trying to find the best ways in which 
the topological characteristics stemming from 
Kohonen�s strategy will lead us to determine the best 
way in which the representative neurons tend to 
accommodate themselves after training. In what 
follows we give a brief account of the results we 
obtained. 

4 Experiments 

We selected sets of data whose characteristics were 
known in advance, i.e. we knew a priori the number of 
clusters into which the information was classified and 



 

which objects belonged to each of the clusters. We 
denote these 4 sets by δ 1 - δ 4. We then ran our 
algorithms (training and GA). Finally, we compared 
the known clusters and memberships with the ones the 
GA found. 

4.1 Data Sets 

Data set δ 1 was obtained from the clinical cases 
reported by Dr. William H. Wolberg from the Hospital 
of the University of Wisconsin, Madison, USA. These 
data was hosted by the University of California at 
Irvine [9]. Every element of the sample consists of 9 
cytological characteristics from tumor breast tissue. 
These were classified in two groups labeled �Benign� 
and �Malign�. Total number of cases: 683; 65% (444) 
were benign while the remaining 35% (239 cases) were 
malign. 
 
Data set δ 2 was obtained from a data base consisting 
of 7 kinds of different outdoors pictures. These images 
were manually segmented in order to create a 
classification for each pixel. Every element in the 
sample represents a 3 X 3 frame. The sample was 
originated by the Vision Group at the University of 
Massachusetts. As in the previous case these data was 
hosted by the University of California at Irvine [9]. 
Total number of elements: 14; number of classes: 7. 
The distribution was uniform with 30 elements per 
group.  
 
Data set δ 3 was obtained as follows: 

a) Generate a random value between 1 and 3 
and assign it to variable C. 

b) Generate a random value between 0 and 1 
for each of the variables u, v, w, x, y and z. 

c) If C=1: u← sin(u); v← cos(v); w← tan(w); 
x← sinh(x);  y← cosh(y); z← tanh(z); F←w2+2x3-
3.5y4-wxyz+2xyz2+3.1416uv2w3x4y5z6-.25; assign to 
class 1. 

d) If C=2: u← cos(u); v← tan(v); w← sinh(w); 
x← cosh(x); y← tanh(y); z← sin(z);F← 3.1416u6v5-
2.71828w4x3+.5778y2z; assign to class 2. 

e) If C=3: u← tan(u); v← sinh(v); 
w← cosh(w); x← tanh(x); y← sin(y); z← cos(z); 
F←w2+2x3-3.5-wz+2xyz2+3.1416u2v2-
2.71828w2x2+.5778y2z2; assign to class 3. 
 Repeat steps (a) � (e) 437 times. 

 Distribution was as follows. Class 1: 154 
elements (35.2%); class 2: 147 elements (33.5%); class 
3: 136 elements (31.2%). 
 
Data set δ 4 was obtained as follows: 

Steps a) and b) as in δ 3. 
c) If C=1: u← sin(u); v← cos(v); w← tan(w); 

x← sinh(x);  y← cosh(y); z← tanh(z); F←w2+2x3-
3.5y4-wxyz+2xyz2+3.1416uv2w3x4y5z6-.25; assign to 
class 1. 

d) If C=2: u← cos(u); v← tan(v); w← sinh(w); 
x← cosh(x); y← tanh(y); z← sin(z); F← 3.1416u6v5-
2.71828w4x3+.5778y2z; assign to class 2. 

e) If C=3: u← tan(u); v← sinh(v); 
w← cosh(w);  x← tanh(x); y← sin(y); z← cos(z); 
F←w2+2x3-wz+2xyz2+3.1416u2v2-
2.71828w2x2+.5778y2z2-3.5; assign to class 3. 

f) If C=4: u← sinh(u); v← cosh(v); 
w← tanh(w); x← sin(x); y← cos(y); z← tan(z); 
F← 3.1416u6v5+w2+2x3+2xyz2+.5778y2z2+uwy-vxz; 
assign to class 4. 

Repeat steps (a) � (f) 437 times. 
Distribution was as follows. Class 1: 109 

elements (24.9%); class 2: 122 elements (27.9%); class 
3: 107 elements (24.5%); class 4: 99 elements (22.7%). 

 
The GA operating with D4H and D4NH performed as shown in 
table 3. In the table, the unlabeled row refers to the results 
obtained by training a SOM with the traditional supervised 
labeling. This tables reflects the best values we were able to 
obtain from metrics which only considered the mathematical 
properties of the classical labeling algorithm. Likewise, in 
table 4 we show the results of  applying the metrics derived 
from topological considerations. 
 

Table 3. Performance of D4H and D4NH 
Efficiency (%)  

δ 1 δ 2 δ 3 δ 4 
D4H 83.54 56.37 82.58 72.00 

D4NH 94.73 57.14 79.60 89.5 
94.73 79.50 97.50 96.10 

Table 4. Performance of  D5T , D6T, D7T and D8T 

Efficiency (%)  
δ 1 δ 2 δ 3 δ 4 

D5T 70.14 61.42 97.48 76.88 
D6T 70.13 57.61 97.48 78.95 
D7T 95.31 66.19 97.48 64.30 
D8T 94.73 58.09 97.48 78.95 

94.73 79.50 97.50 96.10 



 

5 Conclusions 

From tables 3 and 4, two conclusions are immediate: 
a) The metrics defined from the mathematical 

postulates are weaker than those arising 
from the topological postulates. 

b) Topologic metrics denoted as D7T and D8T 
yield better results than the other ones, in 
general. 

The problem of automatic clustering is a very 
complex one and, given the exceedingly large search 
spaces, the previous results seem to be impressive. It 
is clear that no absolute conclusions may be inferred 
from our analysis which, up to this point, has been 
qualitative. To establish hard conclusions we have to 
analyze a very large number of problems of this sort. 
A statistical methodology has been already 
developed [12] with good results. We intend to 
proceed our investigation resorting to this 
methodology. Until then, we have no way to 
ascertain the �hardness� of our results. 
 However, an even summary review of the 
literature having to do with the problem we are 
tackling clearly leaves no doubt as to the interest of 
the results reported here because: 

a) We are assuming no knowledge of the data 
with which we are working. 

b) We are not assuming a preconceived form 
of the relationships involved in the 
clustering. 

c) We do not rely on an expert to establish 
some kind of rule in order to determine the 
relationship we are looking for in the 
elements of a cluster. 

d) We are discarding the need to have prior 
knowledge of the clusters involved in order 
to be able to label the clusters so as to 
make generalization possible. 

e) We are dealing with an NP kind of 
problem (an issue we are not stopping to 
prove) and done so with success via a 
Genetic Algorithm. 

f) Other alternative methods only cope with 
conditions such as the one stated above in a 
very restricted sense and, usually, demand 
the participation of a human expert. 

 
We believe that all these facts regarding the method 
reported here should be sufficient to  point at the 

practicality of these strategy, particularly in the field 
of knowledge discovery and data mining. 
 We expect to report soon enough on hard 
(statistically supported) results which confirm our 
results to date. 
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