
Storing Fuzzy Knowledge and Fuzzy Metaknowledge
in Relational Systems

José Galindo
Dpto. Lenguajes y Ciencias de

la Computación,
Univ. de Málaga, Spain

Angélica Urrutia
Dpto. de Computación e

Informática,
Univ.Católica del Maule, Chile

Mario Piattini
Escuela Superior de

Informática, Univ. de Castilla
la Mancha, Spain

Abstract: - In this article we present how to implement fuzzy databases based on the relational model. This
approach includes many fuzzy attribute types, which can express the most of fuzzy knowledge types. These fuzzy
attribute types include imprecise attributes, fuzzy attributes associated to one or more attributes or with an
independent meaning. In order to represent such fuzzy information we must study two aspects of fuzzy information:
how to represent fuzzy data and how to represent fuzzy metaknowledge data. This second information is very
important and it must be considered in any fuzzy database. This article study the fuzzy metaknowledge data for any
fuzzy attribute and how to represent both in a relational database.

Keywords: Fuzzy relational databases, Fuzzy attributes, Fuzzy degrees, Fuzzy metaknowledge, Representation of
Fuzzy Knowledge.

1. Introduction

The relational model was developed by E.F. Codd
of IBM and published in 1970. This model is the most
used at present. In a theoric level, there exists many
Fuzzy Relational Database models that, based on the
relational model, they extend it in order to allow storing
and/or treating vague and uncertain information [9].

On the other hand, the FuzzyEER model
[5][6][10][11] is an extension of the EER model to
create a models with fuzzy semantics and notations.
This extension is a good eclectic synthesis among the
different models and it provides new and useful
definitions: fuzzy attributes, fuzzy entities, fuzzy
relationships, fuzzy specializations…

The next step is to translate the FuzzyEER
definitions to a DBMS. This will allow us to represent
the database fuzzy knowledge. Actually the 90% of
dabatases are relational. Our target is to present this
extension as simple and useful as possible. Then, we
have choose the relational model and we have
extended the FIRST definitions [3][7][8], which has
been used in some applications [1][2].

The next section define the fuzzy attributes included
in FuzzyEER model. After, we define how to
represent fuzzy data and how to represent fuzzy
metaknowledge data. Finally, concluding remarks and
future developments are discussed.

2. Fuzzy Attributes

In order to model fuzzy attributes we distinguish
between two classes of fuzzy attributes: Fuzzy
attributes whose fuzzy values are fuzzy sets and fuzzy
attributes whose values are fuzzy degrees.

2.1. Fuzzy Sets as Fuzzy Values

These fuzzy attributes may be classified in four
types, based on the definitions of [3][7][8]. This
classification is performed taking into account the
type of referential or underlying domain. In all of them
the values Unknown, Undefined, and Null are
included:

• Type 1: These are attributes with “precise data”,
classic or crisp (traditional, with no imprecision).
However, they can have linguistic labels defined
over them and we can use them in fuzzy queries.
This type of attribute is represented in the same
way as precise data, but can be transformed or
manipulated using fuzzy conditions. This type is
useful for extending traditional databases allowing
fuzzy queries to be made about classic data. For
example, enquir ies of the kind “Give me employees
that earn a lot more than the minimum salary”.

• Type 2: These are attributes that gather
“imprecise data over an ordered referential”.
These attributes admit both crisp and fuzzy data, in
the form of possibility distributions over an
underlying ordered dominion (fuzzy sets). It is an
extension of the Type 1 that does, now, allow the
storage of imprecise information, such as “he is
approximately 2 metres tall”. For the sake of
simplicity the most complex of these fuzzy sets are
supposed to be a trapezoidal function (Fig. 1).

• Type 3: They are attributes over “data of discreet
non-ordered dominion with analogy”. In these
attributes some labels are defined ("blond", "ginger",
"brown",) that are scalars with a similarity (or
proximity) relationship defined over them, so that
this relationship indicates to what extent each pair
of labels resemble each other. They also allow
possibility distributions (or fuzzy sets) over this
dominion, like for example, the value (1/dark,
0.4/brown) which expresses that a certain person is
more likely to be dark than brown-haired. Note that
underlying domain of these fuzzy sets are the set of
labels and this set is non-ordered.

• Type 4: These are attributes proposed in this paper
and they are defined in the same way as Type 3
attributes, without it being necessary for a similarity
relationship to exist between the labels. In this
case, we suppose that we do not need the similarity
relationship (or it does not exist).

2.2. Fuzzy Degrees as Fuzzy Values

The domain of these degrees can be found in the
interval [0,1], although other values are also permitted,
such as a possibility distribution (usually over this unit

interval). In order to keep it simple, we will only use
degrees in the interval [0,1], because the other option
offers no great advantages.

The meaning of these degrees is varied and
depends on their use. The processing of the data will
be different depending on the meaning. The most
important possible meanings of the degrees used by
some authors are [3][4]: Fulfillment degree,
Uncertainty degree, Possibility degree and Importance
degree. Of course, we can define and use other
meanings.

The ways of using these fuzzy degrees are
classified in two families: Associated and non-
associated degrees.

Associated degrees are associated to a specific
value to which they incorporate imprecision. These
degrees may be associated to different concepts [4]:

§ Degree in each value of an attribute (we will call

it as Type 5): Some attributes may have a fuzzy
degree associated to them. This implies that each
value of this attribute (in every tuple or instance) has
an associated degree, that measures the level of
fuzziness of that value. In order to interpret it, we
need to know the meaning of the degree and the
meaning of the associated attribute.
§ Degree in a set of values of different attributes

(Type 6): Here, the degree is associated to some
attributes. Whilst this is an unusual case, it can
sometimes be very useful. It joins the fuzziness of
some attributes in only one degree.
§ Degree in the whole instance of the relation

(Type 7): This degree is associated to the whole
tuple of the relation and not exclusively to the value
of a specific attribute of the tuple (or instance).
Usually, it can represent something like the
“membership degree” of this tuple (or instance) to
the table (or entity) of the database.

Non-associated degrees (Type 8): There are

cases in which the imprecise information which we
wish to express can be represented by using only the
degree, without associating this degree to another
specific value or values. For example, the
dangerousness of a medicine may be expressed by a
fuzzy degree.

In this paper we do not aim to demonstrate the
usefulness of these degrees and their different
meanings. Several authors who have used these
degrees have already done so.

3. Representation of Fuzzy

 Attributes

This representation is different according to the
fuzzy attribute Type. Fuzzy attributes Type 1 are
represented as usual attributes, because they do not
allow fuzzy values. Fuzzy attributes Type 2 need five
classic attributes: One stores the kind of value (Table
1) and the others four store the crisp values
representing the fuzzy value. Note, in Fig. 1 and Table
1, that trapezoidal fuzzy values need the others four
values. An approximate value (approximately d,
d±margin) is represented with a triangular function
centered in d (degree 1) and with degree 0 in
d−margin and d+margin, where value margin depend
on the context (Fig. 1 with b=c and b−a=d−c=margin).

Fuzzy attributes Type 3 need a variable number of
attributes: One stores the kind of value (Table 2).
Note, in Table 2, that number 3 need only two values,
but number 4 need 2n values, where n is the maximum
length for possibility distributions for each fuzzy
attribute. Value n must be defined for each fuzzy
attributes Type 3, and it is stored in the FMB (see
following section).

Fuzzy attributes Type 4 are represented just like
Type 3. The different between then is shown in the
next section. Fuzzy degrees (Types 5, 6, 7 and 8) are
represented using a classic numeric attribute, because
its domain is the interval [0,1].

Numbe r Kind of values

0, 1, 2 UNKNOWN, UNDEFINED,
NULL

3 CRISP: d
4 LABEL: label_identifier
5 INTERVAL: [n,m]
6 APPROXIMATE VALUE: d
7 TRAPEZOIDAL: [a,b,c,d]

Table 1: Kind of values of fuzzy attributes
Type 2.

Number Kind of values

0, 1, 2 UNKNOWN, UNDEFINED, NULL
3 SIMPLE: Degree/Label

4 POSSIBILITY DISTRIBUTION:
Degree1/label1 + ... + Degreen/Labeln

Table 2: Kind of values of fuzzy attributes
Type 3 and 4.

4. Representation of Fuzzy

 Metaknowledge Data: The FMB

Fuzzy metaknowledge data are the necessary
knowledge about the fuzzy database (fuzzy attributes
specially). This information is stored in relational
format in the so-called FMB (Fuzzy Metaknowledge
Base). First, we define the information stored in the
FMB, and then we explain the structure of it (i.e., the
relations in the FMB).

4.1. Information in the FMB

The FMB include the following information:

1. Attributes with fuzzy capabilities: fuzzy
attributesand fuzzy degress (Types 1 to 8).

2. The metaknowledge of each attribute is different

according to its type:

• Types 1 and 2: These fuzzy attributes store in
the FMB the definition (fuzzy set) of each Figure 1: Trapezoidal function.

0

1

a b c d

linguistic label, the “margin” for approximate
values, and the minimum distance to consider
two values as very separated (so-called
“much”). This last value is used in comparisons
like “much greater than”.

• Types 3 and 4: Value n (explained above),
name of linguistic labels and, only for Type 3,
the similarity relationship between whatever two
labels.

• Types 5 and 6: Meaning of the degree and
attribute (Type 5) or attributes (Type 6) to
which the degree is associated.

• Types 7 and 8: Meaning of the degree.

3. Other objects: These objects include fuzzy

qualifiers (associated to an attribute and used to set
the threshold in queries) and fuzzy quantifiers
(associated to a relation or to an attribute). Fuzzy
quantifiers are used in queries (for example “Give
me employees who belong to most of projects”),
and in fuzzy constraints (for example “An
employee must work in many projects”).

If two fuzzy attributes (Types 1, 2, 3 or 4) need the

same definitions we can register these two attributes
as compatibles. This simplify data in the FMB.

4.2. Relations in the FMB

Fig. 2 shows the FMB relations (or tables), its
attributes, its primary keys (underlined) and its foreign
keys (with arrows). We use OBJ# as the table
identifier, and COL# as the column or attribute
identifier (just like Oracle). We cannot explain all
attributes of all FMB relations for lack of space. Then
we only try to give an idea about the usefulness of
each relation:

o FUZZY_COL_LIST: It describes fuzzy attributes

identified by (OBJ#,COL#). F_TYPE set the fuzzy
type (from 1 to 8). LEN is the value n.
CODE_SIG indicates the degree meaning when
F_TYPE∈[5,8].

o FUZZY_DEGREE_SIG: It stores all the degree

meanings of our database.

o FUZZY_OBJECT_LIST: This relation contains

declarations of fuzzy objetcs related with fuzzy
attributes. These fuzzy objects are: linguistic labels,
qualifiers and fuzzy quantifiers.

o FUZZY_LABEL_DEF: It defines the linguistic

labels using trapezoidal functions (Fig. 1).

o FUZZY_APPROX_MUCH: Values “margin”

and “much” for Types 1 and 2.

o FUZZY_NEARNESS_DEF: Similarity relation-

ships for Type 3.

o FUZZY_COMPATIBLE_COL: Compatible

fuzzy attributes, i.e., attributes which use the same
linguistic labels.

o FUZZY_QUALIFIERS_DEF: It defines fuzzy

qualifiers.

o FUZZY_DEGREE_COLS: This relation sets the

attributes (or columns) associated to fuzzy degrees
(only for Type 5 and 6). Note that a Type 5 degree
has only one associated attribute, a Type 6 degree
has some attributes and an attribute may have
many degrees associated to it (but these degrees
must be Type 5 or 6). Of course Type 7 and 8
degrees do not use this table.

o FUZZY_ER_LIST: Using FuzzyEER words, this

relation stores fuzzy entities and fuzzy relationships.
DEGREE_TYPE take ‘M’ for fuzzy entities, ‘C’
for fuzzy entities with degrees computed
automaticaly, ‘E’ and ‘I’ for fuzzy weak entities
(dependency on existence or dependency on
identification) and, finally, ‘R’ for fuzzy
relationships represented by the table OBJ#.

o FUZZY_TABLE_QUANTIFIERS: Definition

of quantifiers associated to a relation or table (not
to a column). These quantifiers are used in fuzzy
constraints and they may be absolute or relative.

FUZZY_COL_LIST (FCL)

OBJ# COL# F_TYPE LEN COM

FUZZY_LABEL_DEF (FLD)

FUZZY_NEARNESS_DEF (FND)

OBJ# COL# FUZZY_ID1 FUZZY_ID2 DEGREE

FUZZY_QUALIFIERS_DEF (FQD)

OBJ# COL# FUZZY_ID1 QUALIFIER

FUZZY_DEGREE_SIG (FQD)

CODE_SIG SIGNIFICANCE

FUZZY_APPROX_MUCH (FAM)

OBJ# COL# MARGEN MUCH

FUZZY_COMPATIBLE_COL (FCC)

OBJ#1 COL#1 OBJ#2 COL#2

FUZZY_OBJECT_LIST (FOL)

OBJ# COL# FUZZY_ID ALFA BETA GAMMA DELTA

OBJ# COL# FUZZY_ID FUZZY_NAME FUZZY_TYPE

CODE_SIG COLUM_NAME

FUZZY_ER_LIST (FERL)

OBJ# COL# CODE_SIG DEGREE_TYPE

FUZZY_DEGREE_COLS (FDC)

OBJ#1 COL#1 OBJ#2 OBJ#2

FUZZY_TABLE_QUANTIFIERS(FTQ)

OBJ# FUZZY_NAME FUZZY_TYPE ALFA BETA GAMMA DELTA

 Figure 2: FMB tables in FIRST-2.

5. Conclusions and Future Lines

This article presents how to store the fuzzy
knowledge of fuzzy databases in a classic
relational database. This allow us to implement
fuzzy databases modeled with the FuzzyEER
model [5][6][10][11].

It should be stressed the fuzzy attributes types,
which can express the most of fuzzy knowledge
types. This research studies how to represent
fuzzy data, the necessary metaknowledge about
these fuzzy data and how to represent this fuzzy
metaknowledge data. This second information is
very important and must be considered in any
fuzzy database.

Actually, we have developed fuzzy databases
with some of these characteristics [3]. Besides,
FSQL (Fuzzy SQL) language may be used in
those databases [2]. The future is extend FSQL
language, in order to treat with all fuzzy attribute
types presented here.

References:

[1] Blanco I., Cubero J.C., Pons O., Vila M.A.

(2000): “An Implementation for Fuzzy
Deductive Relational Databases”. In “Recent
Issues on Fuzzy Databases”, Ed. G. Bordogna
and G. Pasi. Physica-Verlag (Studies in
Fuzziness and Soft Computing), pp. 183-207.

[2] Galindo J., Medina M., Pons O., Cubero J. C.,
“A Server for Fuzzy SQL Queries”. In
“Flexible Query Answering Systems”, Eds. T.
Andreasen, H. Christiansen and H.L. Larsen,
Lecture Notes in Artificial Intelligence (LNAI)
1495, pp. 164-174. Ed. Springer, 1998.

[3] Galindo J., “Tratamiento de la Imprecisión en
Bases de Datos Relacionales: Extensión del
Modelo y Adaptación de los SGBD Actuales”.
Tesis Ph. Doctoral Universidad de Granada,
España, 1999 (www.lcc.uma.es).

[4] Galindo J., Medina J.M., Cubero J.C., García
M.T., “Relaxing the Universal Quantifier of the
Division in Fuzzy Relational Databases”.
International Journal of Intelligent Systems,
16(6), pp. 713-742, 2001.

[5] Galindo J., Urrutia A., Carrasco R., Piattini M.,
“Fuzzy Constraints using the Enhanced Entity-
Relationship Model”. Proceedings published by
IEEE-CS Press of the XXI Int. Conf. of the
Chilean Computer Science Society (SCCC
2001), pp. 86-94. Punta Arenas (Chile), 2001.

[6] Galindo J., Urrutia A., Carrasco R.A., Piattini
M., “Relaxing Constraints in Enhanced Entity-
Relationship Models using Fuzzy Quantifiers”.
To appear in IEEE Transactions on Fuzzy
Systems, 2004/2005.

[7] Medina J.M., “Bases de datos Relacionales
Difusas: Modelo Teórico y Aspectos de su
Implementación”, Ph. Tesis Doctoral,
Universidad de Granada, España, 1994
(decsai.ugr.es).

[8] Medina J.M., Pons O., Vila A., “FIRST. A
Fuzzy Interface for Relational SysTems”. VI
International Fuzzy Systems Association World
Congress (IFSA 1995). Sao Paulo (Brasil),
1995.

[9] Petry F.E., “Fuzzy Databases: Principles and
Applications”. International Series in
Intelligent Technologies. Ed. H.J.
Zimmermann. Kluwer Academic Publ. (KAP),
1996.

[10] Urrutia A., Galindo J., Piattini M.,
“Modeling Data Using Fuzzy Attributes”.
Proceedings published by IEEE Computer
Society Press of the XXII International
Conference of the Chilean Computer Science
Society (SCCC 2002), pp. 117-123. Copiapo
(Chile), 2002. ISBN: O-7695-1867-2.

[11] Urrutia A., “Definición de un Modelo
Conceptual para Bases de Datos Difusas”. Ph.
Doctoral Thesis, University of Castilla la
Mancha (Spain), 2003.

