
Towards An Evolutionary Approach to Case Retrieval 
 

NABILA NOUAOURIA-AMRI, YAMINA MOHAMED BEN ALI, MED TAYEB LASKRI   
Lab.LRI/GRIA Département d’Informatique 

Université Badji Mokhtar de Annaba 
B.P. 12 Annaba (23000) 

ALGERIA 

 
Abstract: Case-Based Reasoning (CBR) is a problem solving paradigm which is able to retrieve and reuse 

solutions that have worked for similar situations in the past. Past situations and their solutions are stored in a 
memory called case base. To find the good experiment in memory is the key of success in the reasoning. The 
good experiment is the one that can perform the best inference. To identify adequate experiment in memory 
constitutes the process of recall. In this paper, we present an evolutionary approach of the recall process applied 
to associative memory architecture. The main idea is to compute the neighbourhood of a new problem by an 
evolutionary algorithm. This will delimit our search space in the case base. 
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1. Introduction 
Case-Based Reasoning (CBR) is a problem solving 
paradigm which is able to retrieve and reuse 
solutions that have worked for similar situations in 
the past. Past situations and the ir solutions are stored 
in a memory called case base. 

To find the good experiment in memory is the key 
of success in the reasoning. The good experiment is  
the one that can perform the best inferences. To 
identify adequate experiment in memory is the recall 
process. Recall is highly influenced by memory 
organization and by retrieve strategies. The accuracy 
(in the sense of exhaustiveness) and speed of recall 
task constitute two important parameters in the 
performance evaluation of a CBR system. 

Case based reasoning is an Artificial Intelligence 
paradigm that can be synergistically combined with 
other approaches to facilitate a broad array of tasks 
[1]. 

Among those possible combinations, we will 
present in the following, an approach to perform a 
quick and complete recall, in an associative memory, 
using evolutionary computing. 

The main idea is to compute the neighbourhood of 
a new problem by an evolutionary algorithm. This 
will delimit our search space in the case base. And 
then, access directly to this neighbourhood via a 
network in an associative memory style. 

For best understanding of the paper, we will start 
with a fast skimming of CBR paradigm (section 2) 
followed by memory models used in CBR (section 
3). The proposed approach will be presented in two 
steps. Section 4.1, will present knowledge 
representation in terms of evolutionary algorithm. 

Section 4.2, will present the memory structure 
supporting the approach, followed by conclusion and 
related works in section 5.  
 
 
2. Case Based Reasoning Paradigm 
Problem solving with CBR proceeds as follows: A 
new problem is posed and is described as the 
problem part of a new case, sometimes also called 
the query. Then, old cases containing problems that 
are similar to the new problem are retrieved and the 
most suitable  solution among retrieved solutions is 
suggested to become the solution of the new 
problem. This solution is then tested in reality and 
may lead to a revised solution worth to be stored as a 
new case. This last step is a form of incremental 
learning that enables CBR systems to adapt to 
changing environments rather smoothly. 

In theory, the basic cycle of CBR is in three 
phases: «retrieve, reuse and store». The system looks 
for a similar case to the input case, reuse the 
recovered solution, and finally, store the current case 
for a future utilization.  
This cycle can be extended to five stages [2], [3]:  
1) Presentation or specification: a description of 
the problem is provided at the entrance of the 
system. This description must be suitable to the 
comparison between the case in entrance and cases 
stored in memory (uniformity of the representation). 
One of the key points of the CBR is the research of 
applicable cases. It is what justify the importance of 
the process that is going to label cases with indexes 
so that they could be recalled at the appropriate 
moment. This indexing leans mainly on the 



extraction of the most characteristic descriptors of 
the case.  
2) Retrieval: the system looks for cases that are 
best unified to this description (closest matching 
cases). These cases are stored in a case base or case 
memory (i.e.: data base of cases). If the case base is 
organized according to a particular structure, an 
algorithm of research describes then a path in this 
structure. A phase of filtering or selection is often 
done permitting to eliminate a subset of worst cases. 
A measure of similarity can be then used to measure 
the resemblance, more precisely, between the current 
case and selected cases. Then returns ordered cases.  
3) Adaptation: the system uses the current 
problem and the matching case to generate a solution 
to this problem. The adaptation constitutes the 
second difficult point (after the indexing) when 
conceiving a CBR system. It is necessary to decide 
what type of knowledge it is interesting to transfer 
from the best case remembered. We can do a 
transformation analogy, consisting in transforming 
the solution of retrieved case to adapt it to the current 
case. Or to proceed by derivation when adapting the 
method of solution generation. Otherwise, the 
possibility to adapt several cases to solve a problem, 
in a simultaneous way or operating several 
remembering and simple adaptation to the different 
stages of the resolution, has been judged more 
creative [4].  
4) Validation: this phase includes the 
possibility of an assessment of the solution proposed 
while testing it in an either simulated or real 
environment. The return of information can guide, in 
case of failure of the proposed solution, a process of 
repair.  
5) Storage: the validated solution is added to 
the case base for a future utilization. We can have 
systems which store cases systematically in memory. 
A more selective memorization is however possible 
and would use some specific criteria to judge if the 
new case is useful to learn according to the current 
case memory. In general a case is useful to learn 
when using possibilities of adaptation and it can 
reach a point of the solution space that was 
inaccessible before the arrival of this new case.  
 
 
3. Memory model 
In order to function correctly, the case based 
reasoning uses cases stored in a case base. This one 
is supposed to be representative of all problems 
encountered in the field. The more it contains cases, 
the better selected case will be similar to the new 
case. The elaborate solution will be thus better. But 
with increasing base size, the calculating cost will be  
more prohibitive. This is why techniques of memory 
organization and search algorithms are particularly 
important in this reasoning mode. 

There are several memory organizations according 
to which search algorithms exist [2], [3]: 
The flat memory: cases are stored sequentially in a 
simple list, array or file. Cases will be retrieved by 
applying a matching function sequentially to each 
case in the file, keeping track of the degree of match 
of each case and returning those cases that match 
best. There is no particular organization put on the 
top of the cases in this scheme and the retrieval 
algorithm is very simple. The matching heuristics, in 
fact, do all the work. The major advantage is that the 
entire case library is searched. As a result, the 
accuracy of retrieval is a function only of how good 
the match functions are. Moreover the addition of a 
new case is not expensive. However, the 
organization is expensive when the base is too large. 
To remedy this disadvantage, we can use alternatives 
such as: Surface indexing to reduce the total of 
candidates, or partitioning of the base in sections, or 
also parallel implementations. 
Shared-feature Network: It is based on gathering 
cases presenting similarities in the same cluster. The 
hierarchies are formed when the clusters are 
subdivided in under-clusters. The methods of 
regrouping used are those met in machine learning. 
This technique offers the advantage of better 
partitioning the case base making search more 
effective than a sequential search. However, the 
storage of new cases is complex. It is difficult to 
maintain the optimality of the network. An additional 
space is necessary for the organization. Several 
networks with different priorities would be necessary 
to increase the precision of search. In addition, there 
is no guarantee that a candidate is not forgotten. 
Discrimination Networks: a discrimination of cases 
is made as a side effect of clustering in shared-
features networks. In discrimination networks, the 
priority is put on discrimination. Each internal node 
is a question that subdivides the set of items stored 
underneath it. Each child node represents a different 
answer to the question posed to its parent. The most 
significant questions are put in first. We find the 
advantages of Shared-feature networks and search is 
more efficient for the latter, because the 
implementation of the traversal of the arcs is based 
on the answering of questions so easier than the first 
network. We can also meet the disadvantages of the 
Shared-feature networks. In addition, the missing 
information makes the search algorithm incompetent 
to answer a question so inefficient to pursuit the 
traversal of the network. 
Redundant discrimination networks:  They provide 
an answer to the problem of missing information. 
They organize items by using various discrimination 
networks, each one with a different ordering of 
questions. A search is done in parallel on the various 
networks. If in one of the networks a question does 
not have an answer, search in this network is 



discounted. At least, one of the networks will find 
the case which is matching if there exists. The major 
disadvantage of such organization is the complexity 
of its implementation. 

The most frequently used models of memory 
relying on a Top-Down search, present some 
common features [5]:  
• They support a structuring of data by regrouping 

together related objects.  
• They support an efficient retrieval by utilizing 

traditional tree search algorithms.  
• Traversing a Top-Down memory structure is 

performed by answering questions in the internal 
nodes in order to choose which path to follow. 
This requires a particular order in answers. In the 
case of incomplete information, it could mislead 
the utilization of an erroneous path.  

• Once a certain cluster of cases has been reached 
in the leaf of a tree, it is hard to access 
neighbouring clusters containing similar cases.  
 
For those reasons, we will expose another vision 

of retrieval problem based on the construction of 
problem neighbourhood.  
 
 
4. Proposed Approach 
The retrieval of applicable cases can be formulated 
in how to extract from the search space a sub-space 
of similar cases. This sub-space is what we call 
neighbourhood of the target problem. It is classically 
obtained by a search strategy. 

The main idea is to compute the neighbourhood 
of a new problem by an evolutionary algorithm 
(figure1). And then, access directly to this 
neighbourhood via a network in an associative 
memory style. 
 
 
 
 
 
 
 
 
 
² 
 
 
 
 
 
 
 
 
 

In the following, we will focus on the evolutionary 
module. 
 
 
4.1. The evolutionary vision 
A case is an entity within which is gathered various 
information on a past situation. The term «situation» 
is very general. A case is also an entity about which 
an inference is possible by a process consisting in 
situating the new situation with regard to the definite 
circumstances in the case.  

A case is constituted of descriptors, also called 
dimensions, distributed in three categories: the 
description of the problem, the solution and issues of 
the solution.  

The description of the problem includes the 
context of the case. The solution is the solution of 
the problem or the reaction to this description (for 
example, the deliberation of a courthouse, the taken 
decision, etc.). It can also describe the used 
reasoning. The exit of the case is the description of 
the context after the implementation and execution 
of the solution. This part of the case is generally 
omitted and knowledge is reported on the other 
stages of the reasoning.  

Coding 
When a new problem is posed, the request to 

retrieve similar cases is generally, expressed with 
dimensions of problem description (figure2 ). 

 
Attrib1  Attribi  Attribn 
Val1 … Vali … Valn 

 
Gene1 

  
Genei 

  
Genen 

 
 
The coding of problem will be: 

Problem description : pbm Chromosome 
Descriptors : di genes 

Descriptor values valj Alleles 
 
 

Pbm = { di }   : an array of descriptors. 
di = (Attribi,valij)  : a couple of attribute/value 
valij € Domj    : each value belongs to a
    specific domain which 
could be symbolic or numeric . 

Population genesis 
The initial population is randomly generated. 
Selection 
This step is based on a strategy guided by 

similarity. 
Reproduction 
Reproduction is essentially made by mutation of 

genes. The chromosome mutation corresponds to the 
troubling of the entry problem description in order to 
generate a neighbourhood.  

Fitness function 

neighbourhood 
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Figure.1. A global vision 

Figure.2. Problem description as a chromosome 

Tab.1. matching between CBR and EC entities 



The fitness function is based on similarity 
assessment in terms of distance between the input 
problem and the actual chromosome. 

The whole algorithm will be: 
 

 
 
 
 
 
 
 
 
 
 
The stop criterion = population stabilisation or max  

time 
 
 
4.2. Memory structure  
The case memory is indeed, a flat structure on which 
we construct a nested structure. There are two types 
of node: value node and case node. 

Each value node represents a particular value of 
a problem attribute. It is linked to all case nodes 
where it occurs. 

The case node point out to the case base where 
the whole case is stored. 

The particularity of this structure is that we reach 
the case by its contents (the principle of associative 
memories). Every source problem computed by the 
evolutionary module will be directly pointed in the 
search space via the net. 

Another particularity is that the structure could 
be easily and automatically build by simply scanning 
the case memory. 

 
 

5. Conclusion 
Many different approaches of case memory models 
have been proposed in literature (see [6]). However 
Evolutionary computing approach seems to be 
interesting for multiple reasons: 

• Flexible knowledge representation. 
• Good computation performances 
• A large scale of applicability 

Up to now their application in CBR was limited to 
the adaptation task. An evolutionary approach to 
case adaptation is presented in [7]. In [8], case 
adaptability is improved by a Genetic Algorithm. 

The proposed approach leans on a memory 
structure reachable by the contents. Flexible, easy to 

construct and having a uniform knowledge 
representation according to the Evolutionary 
computing module. 

It is very important to emphasize that the presented 
approach represents a general framework. When 
considering a specific application field we have to 
tune parameters of our system in order to improve 
the convergence. It is why no illustration is made. 

Since our previous work were on adaptability 
guided retrieval memory (see [9] and [10]), it will be 
interesting to an extension of the approach taking 
into account the adaptability guided retrieval within 
the fitness function. 
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1. Initialise a population of 
chromosomes. 
2. Evaluate each chromosome in the 
population. 
3. Create offspring problems population 
by mating the current generation. 
4. Evaluate offspring population. 
5. if <stop criterion> is satisfied then 
stop else goto 3. 


