
Towards An Evolutionary Approach to Case Retrieval

NABILA NOUAOURIA-AMRI, YAMINA MOHAMED BEN ALI, MED TAYEB LASKRI
Lab.LRI/GRIA Département d’Informatique

Université Badji Mokhtar de Annaba
B.P. 12 Annaba (23000)

ALGERIA

Abstract: Case-Based Reasoning (CBR) is a problem solving paradigm which is able to retrieve and reuse

solutions that have worked for similar situations in the past. Past situations and their solutions are stored in a
memory called case base. To find the good experiment in memory is the key of success in the reasoning. The
good experiment is the one that can perform the best inference. To identify adequate experiment in memory
constitutes the process of recall. In this paper, we present an evolutionary approach of the recall process applied
to associative memory architecture. The main idea is to compute the neighbourhood of a new problem by an
evolutionary algorithm. This will delimit our search space in the case base.

Keywords: Case Based Reasoning (CBR), Case Retrieval, Evolutionary Computing (EC), Associative Memory.

1. Introduction
Case-Based Reasoning (CBR) is a problem solving
paradigm which is able to retrieve and reuse
solutions that have worked for similar situations in
the past. Past situations and the ir solutions are stored
in a memory called case base.

To find the good experiment in memory is the key
of success in the reasoning. The good experiment is
the one that can perform the best inferences. To
identify adequate experiment in memory is the recall
process. Recall is highly influenced by memory
organization and by retrieve strategies. The accuracy
(in the sense of exhaustiveness) and speed of recall
task constitute two important parameters in the
performance evaluation of a CBR system.

Case based reasoning is an Artificial Intelligence
paradigm that can be synergistically combined with
other approaches to facilitate a broad array of tasks
[1].

Among those possible combinations, we will
present in the following, an approach to perform a
quick and complete recall, in an associative memory,
using evolutionary computing.

The main idea is to compute the neighbourhood of
a new problem by an evolutionary algorithm. This
will delimit our search space in the case base. And
then, access directly to this neighbourhood via a
network in an associative memory style.

For best understanding of the paper, we will start
with a fast skimming of CBR paradigm (section 2)
followed by memory models used in CBR (section
3). The proposed approach will be presented in two
steps. Section 4.1, will present knowledge
representation in terms of evolutionary algorithm.

Section 4.2, will present the memory structure
supporting the approach, followed by conclusion and
related works in section 5.

2. Case Based Reasoning Paradigm
Problem solving with CBR proceeds as follows: A
new problem is posed and is described as the
problem part of a new case, sometimes also called
the query. Then, old cases containing problems that
are similar to the new problem are retrieved and the
most suitable solution among retrieved solutions is
suggested to become the solution of the new
problem. This solution is then tested in reality and
may lead to a revised solution worth to be stored as a
new case. This last step is a form of incremental
learning that enables CBR systems to adapt to
changing environments rather smoothly.

In theory, the basic cycle of CBR is in three
phases: «retrieve, reuse and store». The system looks
for a similar case to the input case, reuse the
recovered solution, and finally, store the current case
for a future utilization.
This cycle can be extended to five stages [2], [3]:
1) Presentation or specification: a description of
the problem is provided at the entrance of the
system. This description must be suitable to the
comparison between the case in entrance and cases
stored in memory (uniformity of the representation).
One of the key points of the CBR is the research of
applicable cases. It is what justify the importance of
the process that is going to label cases with indexes
so that they could be recalled at the appropriate
moment. This indexing leans mainly on the

extraction of the most characteristic descriptors of
the case.
2) Retrieval: the system looks for cases that are
best unified to this description (closest matching
cases). These cases are stored in a case base or case
memory (i.e.: data base of cases). If the case base is
organized according to a particular structure, an
algorithm of research describes then a path in this
structure. A phase of filtering or selection is often
done permitting to eliminate a subset of worst cases.
A measure of similarity can be then used to measure
the resemblance, more precisely, between the current
case and selected cases. Then returns ordered cases.
3) Adaptation: the system uses the current
problem and the matching case to generate a solution
to this problem. The adaptation constitutes the
second difficult point (after the indexing) when
conceiving a CBR system. It is necessary to decide
what type of knowledge it is interesting to transfer
from the best case remembered. We can do a
transformation analogy, consisting in transforming
the solution of retrieved case to adapt it to the current
case. Or to proceed by derivation when adapting the
method of solution generation. Otherwise, the
possibility to adapt several cases to solve a problem,
in a simultaneous way or operating several
remembering and simple adaptation to the different
stages of the resolution, has been judged more
creative [4].
4) Validation: this phase includes the
possibility of an assessment of the solution proposed
while testing it in an either simulated or real
environment. The return of information can guide, in
case of failure of the proposed solution, a process of
repair.
5) Storage: the validated solution is added to
the case base for a future utilization. We can have
systems which store cases systematically in memory.
A more selective memorization is however possible
and would use some specific criteria to judge if the
new case is useful to learn according to the current
case memory. In general a case is useful to learn
when using possibilities of adaptation and it can
reach a point of the solution space that was
inaccessible before the arrival of this new case.

3. Memory model
In order to function correctly, the case based
reasoning uses cases stored in a case base. This one
is supposed to be representative of all problems
encountered in the field. The more it contains cases,
the better selected case will be similar to the new
case. The elaborate solution will be thus better. But
with increasing base size, the calculating cost will be
more prohibitive. This is why techniques of memory
organization and search algorithms are particularly
important in this reasoning mode.

There are several memory organizations according
to which search algorithms exist [2], [3]:
The flat memory: cases are stored sequentially in a
simple list, array or file. Cases will be retrieved by
applying a matching function sequentially to each
case in the file, keeping track of the degree of match
of each case and returning those cases that match
best. There is no particular organization put on the
top of the cases in this scheme and the retrieval
algorithm is very simple. The matching heuristics, in
fact, do all the work. The major advantage is that the
entire case library is searched. As a result, the
accuracy of retrieval is a function only of how good
the match functions are. Moreover the addition of a
new case is not expensive. However, the
organization is expensive when the base is too large.
To remedy this disadvantage, we can use alternatives
such as: Surface indexing to reduce the total of
candidates, or partitioning of the base in sections, or
also parallel implementations.
Shared-feature Network: It is based on gathering
cases presenting similarities in the same cluster. The
hierarchies are formed when the clusters are
subdivided in under-clusters. The methods of
regrouping used are those met in machine learning.
This technique offers the advantage of better
partitioning the case base making search more
effective than a sequential search. However, the
storage of new cases is complex. It is difficult to
maintain the optimality of the network. An additional
space is necessary for the organization. Several
networks with different priorities would be necessary
to increase the precision of search. In addition, there
is no guarantee that a candidate is not forgotten.
Discrimination Networks: a discrimination of cases
is made as a side effect of clustering in shared-
features networks. In discrimination networks, the
priority is put on discrimination. Each internal node
is a question that subdivides the set of items stored
underneath it. Each child node represents a different
answer to the question posed to its parent. The most
significant questions are put in first. We find the
advantages of Shared-feature networks and search is
more efficient for the latter, because the
implementation of the traversal of the arcs is based
on the answering of questions so easier than the first
network. We can also meet the disadvantages of the
Shared-feature networks. In addition, the missing
information makes the search algorithm incompetent
to answer a question so inefficient to pursuit the
traversal of the network.
Redundant discrimination networks: They provide
an answer to the problem of missing information.
They organize items by using various discrimination
networks, each one with a different ordering of
questions. A search is done in parallel on the various
networks. If in one of the networks a question does
not have an answer, search in this network is

discounted. At least, one of the networks will find
the case which is matching if there exists. The major
disadvantage of such organization is the complexity
of its implementation.

The most frequently used models of memory
relying on a Top-Down search, present some
common features [5]:
• They support a structuring of data by regrouping

together related objects.
• They support an efficient retrieval by utilizing

traditional tree search algorithms.
• Traversing a Top-Down memory structure is

performed by answering questions in the internal
nodes in order to choose which path to follow.
This requires a particular order in answers. In the
case of incomplete information, it could mislead
the utilization of an erroneous path.

• Once a certain cluster of cases has been reached
in the leaf of a tree, it is hard to access
neighbouring clusters containing similar cases.

For those reasons, we will expose another vision

of retrieval problem based on the construction of
problem neighbourhood.

4. Proposed Approach
The retrieval of applicable cases can be formulated
in how to extract from the search space a sub-space
of similar cases. This sub-space is what we call
neighbourhood of the target problem. It is classically
obtained by a search strategy.

The main idea is to compute the neighbourhood
of a new problem by an evolutionary algorithm
(figure1). And then, access directly to this
neighbourhood via a network in an associative
memory style.

²

In the following, we will focus on the evolutionary
module.

4.1. The evolutionary vision
A case is an entity within which is gathered various
information on a past situation. The term «situation»
is very general. A case is also an entity about which
an inference is possible by a process consisting in
situating the new situation with regard to the definite
circumstances in the case.

A case is constituted of descriptors, also called
dimensions, distributed in three categories: the
description of the problem, the solution and issues of
the solution.

The description of the problem includes the
context of the case. The solution is the solution of
the problem or the reaction to this description (for
example, the deliberation of a courthouse, the taken
decision, etc.). It can also describe the used
reasoning. The exit of the case is the description of
the context after the implementation and execution
of the solution. This part of the case is generally
omitted and knowledge is reported on the other
stages of the reasoning.

Coding
When a new problem is posed, the request to

retrieve similar cases is generally, expressed with
dimensions of problem description (figure2).

Attrib1 Attribi Attribn
Val1 … Vali … Valn

Gene1

Genei

Genen

The coding of problem will be:

Problem description : pbm Chromosome
Descriptors : di genes

Descriptor values valj Alleles

Pbm = { di } : an array of descriptors.
di = (Attribi,valij) : a couple of attribute/value
valij € Domj : each value belongs to a
 specific domain which
could be symbolic or numeric .

Population genesis
The initial population is randomly generated.
Selection
This step is based on a strategy guided by

similarity.
Reproduction
Reproduction is essentially made by mutation of

genes. The chromosome mutation corresponds to the
troubling of the entry problem description in order to
generate a neighbourhood.

Fitness function

neighbourhood

Target
problem

Evolutionary
module

source
problem
source

problem
source

problem
source

problem

Case base

Search space

Associative
access

Figure.1. A global vision

Figure.2. Problem description as a chromosome

Tab.1. matching between CBR and EC entities

The fitness function is based on similarity
assessment in terms of distance between the input
problem and the actual chromosome.

The whole algorithm will be:

The stop criterion = population stabilisation or max

time

4.2. Memory structure
The case memory is indeed, a flat structure on which
we construct a nested structure. There are two types
of node: value node and case node.

Each value node represents a particular value of
a problem attribute. It is linked to all case nodes
where it occurs.

The case node point out to the case base where
the whole case is stored.

The particularity of this structure is that we reach
the case by its contents (the principle of associative
memories). Every source problem computed by the
evolutionary module will be directly pointed in the
search space via the net.

Another particularity is that the structure could
be easily and automatically build by simply scanning
the case memory.

5. Conclusion
Many different approaches of case memory models
have been proposed in literature (see [6]). However
Evolutionary computing approach seems to be
interesting for multiple reasons:

• Flexible knowledge representation.
• Good computation performances
• A large scale of applicability

Up to now their application in CBR was limited to
the adaptation task. An evolutionary approach to
case adaptation is presented in [7]. In [8], case
adaptability is improved by a Genetic Algorithm.

The proposed approach leans on a memory
structure reachable by the contents. Flexible, easy to

construct and having a uniform knowledge
representation according to the Evolutionary
computing module.

It is very important to emphasize that the presented
approach represents a general framework. When
considering a specific application field we have to
tune parameters of our system in order to improve
the convergence. It is why no illustration is made.

Since our previous work were on adaptability
guided retrieval memory (see [9] and [10]), it will be
interesting to an extension of the approach taking
into account the adaptability guided retrieval within
the fitness function.

References:
[1] C.Marling et al., « Case-Based reasoning
Integrations », in AI Magazine, vol. 23, N°1, Spring
2002.
[2] J. Kolodner, « Case Based Reasoning », ed.
Morgan Kaufmann, 1993.
[3] A. Aamdot, E. Plaza, « Case Based Reasoning:
Foundational Issues, Methodological Varia tions and
System Approaches », published in IOS Press, Vol.
7:1, pp.39-59, 1994.
 [4] J. Kolodner, « Judging which is the best case for
a case based reasoner », in DARPA Workshop on
CBR, 1992.
[5] M. Lenz et al, « Diagnosis and decision support »
in LNAI 1400, éd. Springer 1998.
[6] N. Nouaouria, M.T. Laskri « Toward a formal
model of case based reasoning from the roots »,
proceedings CESA’2003, Lille France, July 9-11
2003.
[7] A. Gomez de Silva Garza, M.L. Maher « An
Evolutionary Approach to Case Adaptation », 3rd
ICCBR’99, in LNAI 1650 , Germany, July 1999.
[8] L. Purvis, S. Athalye « Towards Improving Case
Adaptability with a Genetic Algorithm », 2nd
ICCBR’97, in LNAI 1266 , USA, July 1997.
[9] N. Nouaouria, M.T. Laskri « un modèle de
mémoire pour la recherche de cas adaptables », in
proceedings of ISPS’2003, Algiers, Algeria, May 5-
7, 2003.
[10] N. Nouaouria, M.T. Laskri « Retrieving
adaptable cases into an associative memory »,
submitted to ECAI 2004.

1. Initialise a population of
chromosomes.
2. Evaluate each chromosome in the
population.
3. Create offspring problems population
by mating the current generation.
4. Evaluate offspring population.
5. if <stop criterion> is satisfied then
stop else goto 3.

