
A self-organized neural network for 3D surface reconstruction

AGOSTINHO DE MEDEIROS BRITO JÚNIOR
ADRIÃO DUARTE DÓRIA NETO

JORGE DANTAS DE MELO
Departmento de Engenharia de Computação e Automação

Universidade Federal do Rio Grande do Norte
DCA - CT - UFRN, 59056-270, Natal, RN, Brasil

Abstract: We present a multiresolution surface reconstruction method from point clouds in 3D space
based on Kononen’s self-organizing neural networks. It uses a set of mesh operators and simple rules
for selective mesh refinement. Experimental results shows the method is very sucessfull to reconstruct
forms of varied geometry.

1 Introduction

The surface reconstruction of 3D objects has a
wide range of applications such as CAD design,
virtual reality, medical imaging and movie indus-
tries.

According to the scanning device used, the
sample of points used for reconstruction can be
classified as structured and unstructured, based
on to the connectivity information among the
points [1].

Given a real surface and a set of points sam-
pled over it, the goal is to create a surface model
that approximate the features of the real model.
A good surface reconstruction algorithm must be
able to recover both geometry and topology in or-
der to fit the data correctly.

One of the main trouble with surface recon-
struction is about topology recovery. In some
algorithms, if the distribution of the samples in
the space is not dense or uniform enough, wrong
holes may appear on undesirable places over the
surface. Sometimes, the algorithm must pre-
establish the mesh topology, just as in the case of
deformable models [2].

We address the surface reconstruction problem
using a self-organizing neural network to position
the vertices of a triangle mesh. Given an initial
mesh, we use the Kohonen learning algorithm to

move its vertices coordinates toward the data sam-
pled over the surface.

In fact, neural networks have been already used
for surface reconstruction[3, 4, 5]. However, in
this work, we introduce an improved mesh refine-
ment method to create a better multi-resolution
surface reconstruction algorithm based on neural
networks. The major advantage of our approach is
that the refinement method proposed leads to sur-
face meshes with a user-selective increase of ele-
ments, while still maintaining the same topology
pre-defined by the initial mesh.

2 Previous work

The surface reconstruction methods can be
roughly classified as static methods, based on ge-
ometric techniques, and dynamic, based on the
evaluation of energy or force functions.

One of most famous static method was pro-
posed by Hoppe [1]. The sample points are used
to define a signaled distance function in

� 3. The
zero set is interpolated and polygonized using the
Marching Cubes [6] algorithm to create an initial
approximation for the surface. After steps of sur-
face optimization and smoothing, excellent mod-
els are achieved.

Another static method, the Crust [7], is based
on the Voronoi diagram to find an approxima-

tion for the Medial Axis Transform (MAT) of the
object. The inverse transformation of the MAT
is used to obtain the reconstructed surface mesh.
However, if the sample is not uniformly spaced,
some undesirable holes may appear on the sur-
face.

The other methods are usually based on the tri-
angulation of the points in the sample. The es-
tablishment of geometry constraints such as the
curvature [8], each method obtain the solution ac-
cording to the desired application.

Among the dynamic methods, the most com-
mon ones are based on deformable surfaces and
balloons [9, 10]. Deformable surfaces are polygo-
nal meshes that are modified according to the data
and some shape constraints, starting from a given
initial state. The reconstruction is obtained by the
equilibrium of internal and external forces. On
the balloons, the vertices movement is governed
by internal pressure forces that make the model
(balloon) inflate in order to fit the data [11].

Most of these approaches have been widely
studied in literature. Some of them are known
to be susceptible to problems with local minima,
may result on surface meshes with wrong geome-
try or topology and still are very time consuming,
even for small datasets.

On the other hand, neural network research in
this field is still very incipient. Most of the pre-
vious works with neural nets treats simple cases,
usually only with elevation data and open topol-
ogy meshes [3, 4, 5].

Some of the important stochastic characteristics
of the self-organizing neural networks may lead to
surface meshes with very good geometry proper-
ties that were still not investigated.

3 Self-organizing Maps: Kohonen al-
gorithm

Kohonen [12] proposed a model of self-
organizing neural network that has the ability to
approximate the input space used for training,
while still maintaining the topological ordering.

In the Kohonen model, the training objective is
to transform an incoming signal pattern of arbi-
trary dimension into a two-dimensional discrete
map (the Self-Organizing Map - SOM), and to

perform this transformation adaptively in a topo-
logically ordered fashion [13]. The map is usu-
ally a bidimensional lattice (see Fig. 1) of neurons
whose weights store the map approximation for
the input space.

Figure 1: Kohonen self-organizing map with tri-
angular lattice.

The input patterns of the neural network are
vectors denoted by

x = [x1 x2 . . . xm]T (1)

and the synaptic weights are vectors denoted by

wj = [wj1 wj2 . . . wjm]T ,

j = 1, 2, . . . , l,
(2)

where m is the dimension of the input space and l
is the number of neurons in the network.

The training algorithm is composed of three
main steps for each input pattern presented to
the network: Competition, where the value of a
discriminant function is calculated for each neu-
ron. The Euclidean distance is usually the normal
choice. The neuron with the lowest value for the
discriminant function

i(x) = arg min
i

‖x − wj‖ (3)

is considered to be the winner; Cooperation,
where each neuron establishes a topological
neighborhood of neurons to be excited. Such neu-
rons will be excited according to an neighborhood
function, usually a Gaussian function:

hj,i(x) = exp

(

−
d2

j,i

2σ2

)

(4)

σ(n) = σ0 exp

(

−
n

τ1

)

(5)

where σ0 is the size of the neighborhood
function at the beginning of the training,

τ1 = niter/ log(σ0) is a time constant, n =
0, 1, . . . , niter is the time step and niter is the
number of iterations used for training; and Adap-
tation, where the synaptic weights of each neu-
ron is modified in order to enhance the response
to similar input patterns. Such modification can
be sequential, if the weights are modified as the
input patterns are presented to the neural net, or in
batch,

wj(n + 1) =

∑m

k=0 hj,i(x(k))x(k)
∑m

k=0 hj,i(x)

, (6)

if the weights are modified only once, after all pat-
terns are presented.

We choosed to use the batch SOM approach be-
cause it has a lot of advantages when compared to
the sequential SOM. The weights update does not
depend on the order the input patterns is presented
to the network. There is no learning parameter,
avoiding a potential source of error and still there
exists the advantage of data partitioning, allowing
the network to be trained on parallel architectures.

4 Mesh representation and operation

We use triangle meshes for surface representa-
tion. Each surface S is 2-manifold without bor-
ders, represented by a polygonal mesh composed
of: a set of vertices; a set of edges, interconnect-
ing pairs of vertices; and a set of triangle faces.

Despite the impressive self-organization of the
SOM algorithm, it has some difficulties when re-
constructing concave regions. Some vertices or
triangles of the reconstructed surface may not be
stable, “dangling” among regions populated by
the data, such as those placed between the bunny’s
ear and loin in figure 2.

In order to make such improvements, we define
a set of mesh operators that will allow to perform
improvements on the surface geometry, in order to
better fit the data: edge swap, edge collapse, ver-
tex split and triangle subdivision. Three of these
operations are presented in the figure 3. In this
work, the position of the new vertex in an edge
collapse operation will assume the position of one
of the two vertices of the edge.

In the vertex split operation used, only two new
triangles will be created, although other strategies

Figure 2: Vertices and triangles dangling among
regions of the sample. See detail at bunny’s ear.

Edge swap

Vertex Split

Edge Colapse

Edge swap

Figure 3: Edge swap, edge colapse and vertex
split operations.

are possible [1].
The triangle split is done for the whole mesh in

a single step. First, the edges of all triangles de-
sired to be subdivided are marked. Then, for each
triangle, we verify how many of its three edges
are marked and perform subdivision for this trian-
gle according to the subdivision rules presented in
figure 4. With this procedure, we will ensure that
the mesh will be composed only of triangles after
this refinement. An example of this subdivision
procedure is presented in figure 5.

Figure 4: Triangle subdivision rules.

5 The algorithm

We use the self-organizing network described in
section 3 to move the vertices of a initial mesh. In
the case of surface reconstruction, the positions of

Figure 5: Triangle subdivision example. On the
left, the dark triangles represent the desired to be
subdivided. On the right, the result of the subdivi-
sion is presented.

the vertex in the mesh will be represented by neu-
rons weights and the lattice interconnection struc-
ture for the network will be constructed in order
reflect the geometry and topology of the initial
mesh.

The size of the initial neighborhood function,
σ0, described in equation (4), is equal to mesh di-
ameter divided by two. The data sample of the
surface to be reconstructed is used as training set
to the neural network. We use N iteration steps for
training and more N training steps for and addi-
tional convergence phase, where only the nearest
neurons of the winner neuron are maintained in
the neighborhood. This additional steps are used
to compensate some adaptive capability that is lost
in the batch version of SOM [14].

Once finished the training phase, the resulting
mesh is modified in order to better fit the data. We
first calculate the Euclidean distance of every ver-
tex in the mesh to the closest point in the training
set. The mean and the associated standard devia-
tion for such distance are calculated and those ver-
tices which distance is larger than mean + stan-
dard deviation are considered unstable.

For each unstable vertex, we search through its
neighbour vertices for any that is not dangling and
we collapse the edge connecting these two ver-
tices. The coordinates of the new vertex resulted
from the edge collapse will be same of the chosen
adjacent neighbour.

After the edge collapse operation, we now per-
form a set of edge swaps in the resulting mesh us-
ing the algorithm proposed by [5]. In this step, we
obtain the minimum Euclidean distances from the

triangle baricenters (BT) to the the training set:

MD(T) = min
p∈x

Distance(p,BT) (7)

The set of distances with its respective triangles
ids is stored into a sorted list, with the largest dis-
tance values at the top. We define a initial flip
threshold equal to the distance stored at the top
of the sorted list. We now iterate over the list
and we perform swaps on the edges of the trian-
gles with values of MD(T) largest than the spec-
ified threshold. To choose which edges should be
swapped, a edge deviation measure is defined:

Dev(E) = MD(T0) + MD(T1) (8)

where T0 and T1 are the two triangles adjacent
to the edge E. For each problematic triangle, we
first try a single swap on its edge with the largest
value of Dev(E). If the value of Dev(E) for the
new edge is smaller than the old one and the value
of MD(T) is smaller for at least one of the two
triangles adjacents to this edge, the single swap is
accepted. Otherwise, we try a double swap, main-
taining this first swap and swapping the edge with
the second largest deviation. If this new swap sat-
isfies the above condition, the double swap is ac-
cepted. Otherwise, the original triangle configu-
ration is maintained. The single and double edge
swap operations are presented in figure 6.

Edge with first largest deviation
Edge with second largest deviation

Double swapSingle swap

Figure 6: Single and double edge swaps.

Once all triangles with minimum distance
largest than the threshold are tested, we search the
list for the largest distance that is smaller than the
previous threshold. Using this value as the new
threshold, we restart the scan through the list and
the edge swap operations. When the threshold be-
comes smaller than the mean value for MD(T)
the edge swap step is finished.

The reconstruction stops at the end of the edge
swap step. However, for a multi-resolution learn-
ing, we must refine the resulting mesh in order
to obtain a new mesh with more elements. This
refined mesh is now used to build a new neural
network to be trained with the same process de-
scribed above.

In the refinement step, we calculate the values
of MD(T) for all triangle in the mesh and ob-
tain the mean and standard deviation values for
this measure. The triangles with MD(T) largest
than mean + standard deviation are marked to be
subdivided. Using the triangle subdivision rules
presented in section 4, we create the triangles that
will compose the new mesh. And, at least, we
search for vertices with excessive vertices con-
nected to it. Vertex with more than eight adjacents
are submitted to a vertex split operation, with half
part of the consecutive adjacents belonging to the
new created vertices.

6 Results

The whole method was implemented in C++, run-
ning on a Pentium III 500 Linux machine. We are
assuming that the surfaces to be reconstructed are
homeomorphic to a sphere, but meshes with dif-
ferent topology are possible. The initial mesh is
a octahedron with 8 faces. We trained the neu-
ral network with 50 iterations for each resolution
level. The method was tested with the Stanford
bunny (Fig.7), with 35947 points. The experimen-
tal results show the algorithm capabilities.

When we compared the Stanford bunny re-
construction with other multi-resolution method
available in literature [5], the amount of triangles
in equivalent resolution levels are smaller. The
first presented resolution level has 306 triangles
against 320 of the other method; In the second,
third and fourth resolution level, we get 988, 2822
and 7468 triangles, against 1280, 5120 and 20480
triangles of the other method.

7 Conclusion

We developed a surface reconstruction method
based on the unsupervised capabilities of the Ko-

Figure 7: The Stanford bunny points and the sur-
face reconstruction from the coarser to the finest
resolution level, with 306, 988, 2822, 7468 and
25016 triangles, respectively.

honen algorithm. The positions of the vertices in a
initial mesh are modified according to the sample
data used as the training set. The developed al-
gorithm is able to create 3D meshes with variated
geometry, in a multi-resolution fashion.

Some used heuristics allow a selective refine-
ment, from coarser resolutions to finest resolu-
tions, according a threshold value based on its
minimum distance from the mesh triangles to the
training set. The major advantage of this approach
is that this threshold can be set by the user in order
to produce meshes with more or less triangles, al-
lowing a better refinment control, when compared
with other multi-resolution methods.

The algorithm was tested with well known
datasets available in the literature, but is extensi-
ble for others input sets.

References

[1] Hugues Hoppe, Surface reconstruction from
unorganized points, Ph.D. thesis, University
of Washington, 1994.

[2] J. Montagnat, H. Delingette, and N. Ayache,
“A review of deformable surfaces: topology,
geometry and deformation,” Image and Vi-
sion Computing, vol. 19, 2001.

[3] D. S. Chen, R. C. Jain, and B. G. Schunck,
“Surface reconstruction using neural net-
works,” in Computer Vision and Pattern
Recognition conference proceedings. Junho
1992, pp. 815–817, IEEE Computer Society.

[4] S. Alfonzetti, S. Coco, S. Cavalieri, and
M. Malgeri, “Automatic mesh generation by
the let-it-grow neural network,” IEEE trans-
actions on magnetics, vol. 32, no. 3, Maio
1996.

[5] Yizhou Yu, “Surface reconstruction from
unorganized points using self-organizing
neural networks,” in Proc. of IEEE Visual-
ization’99 LBHT, 1999.

[6] W. E. Lorensen and H. E. Cline, “Marching
cubes: a high resolution 3d surface construc-
tion algorithm,” Computer Graphics, vol.
21, no. 4, pp. 163–169, Julho 1987.

[7] Nina Amenta, Sunghee Choi, and Ravi Kr-
ishna Kolluri, “The power crust,” in Pro-
ceedings of the sixth ACM symposium on
Solid modeling and applications. 2001, pp.
249–266, ACM Press.

[8] L. Alboul, G. Kloosterman, C.R. Traas, and
R.M.J van Damme, “Best data-dependent
triangulations,” Tech. Rep. 1487, Fac-
ulty of Mathematical Sciences, University of
Twente, Junho 1999.

[9] Laurent D. Cohen, “On active contour mod-
els and ballons,” Computer Vision, Graph-
ics, and Image Processing: Image Under-
stading, vol. 2, no. 53, pp. 211–218, Maro
1991.

[10] Demetri Terzopoulos and Andrew Witkin,
“Deformable models,” IEEE Computer
Graphics and Applications, vol. 8, no. 6, pp.
41–51, 1988.

[11] Y. Chen and G. Medioni, “Description of
complex objects from multiple range images
using an inflating balloon model,” Computer
Vision and Image Understanding, vol. 61,
no. 3, pp. 325–334, May 1995.

[12] T. Kohonen, Self-organization and associa-
tive memory, Springer-Verlag, New York,
1984.

[13] Simon Haykin, Neural Networks: a com-
prehensive foundation, Prentice-Hall, New
Jersey, 2 edition, 1999.

[14] T. Kohonen, “Things you haven’t heard
about the self-organizing map,” in Proceed-
ings of the IEEE Internation Conference on
Neural Networks, San Francisco, pp. 1147–
1156.

