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Abstract In the paper a comparison of differ-
ent nonlinear model-based predictive control algo-
rithms is presented as a case study for a continu-
ous stirred reactor. The focus is given to the fuzzy
predictive control approach which is compared to
Wiener based model predictive control and nonlin-
ear model predictive control based on optimization.
It has been shown that fuzzy predictive control law
which is given in analytical form gives very promis-
ing results in comparison to other two approaches
which are both based on optimization. All the pro-
posed approaches are potentially interesting in the
case of batch reactors, heat-exchangers, furnaces and
all the processes with strong nonlinear dynamics.

Keywords: nonlinear predictive control, fuzzy
identification, fuzzy-model predictive control.

1 Introduction

Model-based predictive control (MBPC) refers to a
class of control algorithms that control the plant
through the use of process model. The principle is
based on the forecast of the output signal at each
sampling instant. The forecast is done implicitly or
explicitly based on the model of the controlled pro-
cess. In the next step the control is selected which
brings the predicted process output signal back to
the reference signal in a way to minimize the differ-
ence between the reference and the output signal.

Although, the processes in the nature are inher-
ently nonlinear, the majority of MBPC applica-
tions and algorithms up to date are based on lin-
ear models. The reason for that is in use of a lin-
ear model and a quadratic objective function where
the nominal MBPC algorithms takes the form of a
highly structured convex Quadratic Program (QP),
for which the solution can be easily found.

In some highly nonlinear cases the use of nonlin-
ear model-based predictive control (NMBPC) can be
easily justified. By introducing the nonlinear model
into predictive control problem, the complexity in-

crease significantly. In literature [1], [5] a overview
of different nonlinear predictive control approaches
are discussed.

In this work we have compared three different pre-
dictive control algorithms: fuzzy model based non-
linear predictive control (FPFC) ([13], [14]) , Wiener
based model predictive control (WMPC) ([10]) and
nonlinear model predictive control based on opti-
mization (NMPC) ([2], [12]). The main focus is
given to fuzzy model based algorithm. First two ap-
proaches are based on models given in a form which
approximate the proces nonlinear behavior and the
last one is based on explicit mathematical model of
the proces. Both, WMPC and NMPC are based on
optimization which can be sometimes a bottleneck of
the whole algorithm, because it could be very time
consuming. The control law in the case of FPFC
approach which is based on fuzzy model is given in
analytical form. This makes the approach very easy
for implementation also in programmable logic con-
trollers.

The paper is organized as follows. Section 2 de-
scribes the continuous stirred-tank reactor, where
the process description is given and steady-state
analysis is realized and identification of the pro-
cess in the fuzzy model form is obtained. Section
3 presents the control strategies. In section 4 sim-
ulation results and comparison of different nonlin-
ear MBPC control algorithms are presented and dis-
cussed. Finally, in section 5 some concluding re-
marks are presented.

2 Continuous Stirred-Tank
Reactor (CSTR)

2.1 Process Description

The simulated continuous stirred-tank reactor
(CSTR) process consists of an irreversible, exother-
mic reaction, A → B, in a constant volume reactor
cooled by a single coolant stream, which can be mod-
elled by the following equation ([11]),
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Measured concentration CA 0.1mol/l
Reactor temperature T 438.54K
Coolant flow rate qc 103.41lmin−1

Process flow rate q 100lmin−1

Feed concentration CA0 1mol/l
Feed temperature T0 350K
Inlet temperature Tc0 350K
CSTR volume V 100l
Heat transfer hA 7× 105calmin−1 K−1

Reaction rate k0 7.2× 1010 min−1

Activation energy E/R 1× 104K
Heat of reaction ∆H −2× 105cal/mol
Liquid densities ρ,ρc 1× 103g/l
Specific heats CpCpc 1calg−1K−1

Table 1: Nominal CSTR parameter values.

ĊA =
q

V
[CA0 − CA]− k0CA exp

(

−E

RT

)

(1)

Ṫ =
q

V
(T0 − T )−

k0∆H

ρCp

CA exp

(

−E

RT

)

+
ρcCpc

ρCpV
qc (2)

[

1− exp(−
hA

qcρcCpc

)

]

(Tc0 − T )

The measured concentration has a time delay
d=0.5 min., then CAmeas

(t) = CA(t−td). The objec-
tive is to control the measured concentration of A,
CA, by manipulating the coolant flow rate qc. This
model is a modified version of the first tank of a two-
tank CSTR example by ([4]). In the original model,
the time delay was zero.

2.2 Steady-State Analysis

The state variables x1 and x2 stand for the dimen-
sionless reactant concentration and the reactor tem-
perature, respectively. The symbol qc represents
the coolant flow rate (manipulated variable) and the
other symbols represent constant parameters whose
values are defined in Table 1. The process dynam-
ics is nonlinear due to the Arrhenius rate expression
which describes the dependence of the reaction rate
constant on the temperature (x2). That is why the
CSTR exhibits some operational and control prob-
lems. Fig. 1 shows the plot of the steady state values
for x1 versus the input qc.

As shown in Fig. 1, the reactor presents multiplic-
ity behavior with respect to the coolant flow rate.
The CSTR modeled by equations (1-2) behaves as
an open-loop unstable system if the concentration
inside the reactor is between 0.14 and 0.92. In par-
ticular, the point A (qc ≈ 111.85 lmin−1) in Fig. 1 is
a Hopf Bifurcation point. In our aplication, we are
interested in the operation in the stable operative
point given by qc = 103.41 lmin−1 and CA = 0.1.
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Figure 1: Stability analysis

2.3 Process Identification

Typical fuzzy model in [15] is given in the form of
rules

Rj : if xp1 is A1,k1 and . . . xpq is Aq,kq then y = φj(x)
j = 1, . . . ,m

k1 = 1, . . . , f1 k2 = 1, . . . , f2 . . . kq = 1, . . . , fq (3)

The q-element vector xT
p = [xp1, ..., xpq] denotes the

input or variables in premise, and variable y is the
output of the model. With each variable in premise
xpi (i = 1, . . . , q), fi fuzzy sets (Ai,1, . . . ,Ai,fi

) are
connected, and each fuzzy set Ai,ki

(ki = 1, . . . , fi)
is associated with a real-valued function µAi,ki

(xpi) :
R → [0, 1], that produces membership grade of the
variable xpi with respect to the fuzzy set Ai,ki

. To
make the list of fuzzy rules complete, all possible
variations of fuzzy sets are given in Eq. (3), yielding
the number of fuzzy rules m = f1 × f2 × · · · × fq.
The variables xpi are not the only inputs of the
fuzzy system. Implicitly, the n-element vector xT =
[x1, ..., xn] also represents the input to the system.
It is usually referred to as the consequence vector.
The functions φj(·) can be arbitrary smooth func-
tions in general, although linear or affine functions
are usually used.

The system in Eq. (3) can be described in closed
form if the intersection of fuzzy sets is previously
defined. The generalized form of the intersection is
the so-called triangular norm (T-norm). In our case,
the latter was chosen as algebraic product yielding
the output of the fuzzy system

y =

∑f1

k1=1 · · ·
∑fq

kq=1 µA1,k1
(xp1) . . . µAq,kq

(xpq) φj(x)
∑f1

k1=1 · · ·
∑fq

kq=1 µA1,k1
(xp1) . . . µAq,kq

(xpq)

(4)
It has to be noted that a slight abuse of notation is
used in Eq. (4) since j is not explicitly defined as
running index. From Eq. (3) is evident that each
j corresponds to the specific variation of indexes ki,
i = 1, . . . , q.

To simplify Eq. (4), a partition of unity is consid-
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ered where functions βj(xp) defined by

βj(xp) =
µA1,k1

(xp1) . . . µAq,kq
(xpq)

∑f1

k1=1 · · ·
∑fq

kq=1 µA1,k1
(xp1) . . . µAq,kq

(xpq)

j = 1, . . . ,m (5)

give information about the fulfilment of the respec-
tive fuzzy rule in the normalized form. It is obvious
that

∑m
j=1 βj(xp) = 1 irrespective of xp as long as

the denominator of βj(xp) is not equal to zero (that
can be easily prevented by stretching the member-
ship functions over the whole potential area of xp).
Combining Eqs. (4) and (5) and changing summa-
tion over ki by summation over j we arrive to the
following equation:

y =
m
∑

j=1

βj(xp)φj(x) (6)

From Eq. (6) it is evident that the output of a
fuzzy system is a function of the premise vector xp

(q-dimensional) and the consequence vector x (n-
dimensional). The dimension of the input space may
be lower than (q+n) since it is very usual to have the
same variables present in vectors xp and x. Vector z

(d-dimensional) comprises of the elements of xp and
those of x that are not present in xp.

Very often, the output value is defined as a linear
combination of consequence states

φj(x) = θθθT
j x, j = 1, . . . ,m, θθθT

j = [θj1, . . . , θjn]
(7)

If Takagi-Sugeno model of the 0-th order is chosen,
φj(x) = θj0, and in the case of the first order model,

the consequent is φj(x) = θj0 + θθθT
j x. Both cases

can be treated by the model (7) by adding 1 to the
vector x and augmenting vector θθθ with θj0. To sim-
plify the notation, only the model in Eq. (7) will be
treated in the rest of the paper. If the matrix of the
coefficients for the whole set of rules is written as
ΘΘΘT = [θθθ1, ..., θθθm] and the vector of membership val-

ues as βββT (xp) =
[

β1(xp), . . . , β
m(xp)

]

, then Eq. (6)
can be rewritten in the matrix form

y = βββT (xp)ΘΘΘx (8)

The fuzzy model in the form given in Eq. (8) is
referred to as affine Takagi-Sugeno model and can
be used to approximate any arbitrary function that
maps the compact set C ⊂ Rd to R with any de-
sired degree of accuracy in [6], [17] and [18]. The
generality can be proven by Stone-Weierstrass in [3]
theorem which indicates that any continuous func-
tion can be approximated by fuzzy basis function
expansion in [9].

To identify the process, the discrete static com-
pensator was added to stabilize the process at high
concentration values

∆uff = Kff [T (k)− T (k − 1)] , (9)

where Kff was chosen to be 3. The process
was identified in a form of discrete second or-
der model with the premise defined as xT

p =

[CA(k)] and the consequence vector as xT =
[CA(k), CA(k − 1), qc(k − TDm

), 1]. The functions
φj(·) can be arbitrary smooth functions in general,
although linear or affine functions are usually used.
Due to strong nonlinearity the structure with six
rules and equidistantly shaped gaussian membership
functions was chosen. The sampling time was chosen
to be Ts = 0.1min. The nonlinearity depends mostly
on concentration. The structure of fuzzy model is
given in (10)

Rj : if CA(k) is Aj then

CA(k + 1) = a1jCA(k)+
+a2jCA(k − 1) + b1jqc(k − TDm

) + rj j = 1, . . . ,m (10)

The parameters of the fuzzy form in (10) have been
estimated using least square algorithm where the
data have been preprocessed using QR factoriza-
tion. The estimated parameters can be written
as vectors aT

1 = [a11, ..., a1m], aT
2 = [a21, ..., a2m],

bT
1 = [b11, ..., b1m] and rT

1 = [r11, ..., r1m]. The esti-
mated parameters in the case of CSTR are as follows:

a
T
1 = [1.37, 1.45, 1.54, 1.69, 1.75, 1.85]

a
T
2 = [−0.44,−0.51,−0.60,−0.74,−0.79,−0.88]

b
T
1 = [1.42, 1.89, 2.30, 2.19, 2.77, 2.38] · 10−4

r
T
1 = [−0.82,−1.37,−1.76,−0.185,−2.51,−2.23] · 10−2 (11)

and TDm
= 5.

In our case the TS fuzzy model was after esti-
mation of the parameter , transformed into a state
space form (14) because of the control purposes.

xm(k + 1) =
∑

i

βi(xp(k)) (Ami
xm(k))+

+
∑

i

βi(xp(k)) (Bmi
u(k − TDm

) + Rmi
) (12)

ym(k) = Cmxm(k) (13)

Ami
=

[

0 1
a2i

a1i

]

Bmi
=

[

0
b1i

]

Cm =
[

0 1
]

Rmi
=

[

0
ri

]

(14)

where the proces model output concentration CA is
denoted as ym and the input flow qc as u.

The frozen-time theory ([7], [8]) enables the re-
lation between the nonlinear dynamical system and
the associated linear time-varying system. The the-
ory establish the following fuzzy model

xm(k + 1) = Āmxm(k) + B̄mu(k − TDm
) + R̄m (15)

ym(k) = Cmxm(k) (16)

where Ām =
∑

i βi(xp(k))Ami
, B̄m =

∑

i βi(xp(k))Bmi
and R̄m =

∑

i βi(xp(k))Rmi
.

3 Control Strategies

3.1 Fuzzy model based nonlinear pre-
dictive control

As first approach a predictive functional control
([13]) was applied to control the reactor. In this
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case the prediction of the plant output is given by
its fuzzy model in the state-space domain ([14]).

The problem of delays in the plant is circumvented
by constructing an auxiliary variable that serves as
the output of the plant if there were no delay present.
The so-called ”undelayed” model of the plant will be
introduced for that purpose. It is obtained by ”re-
moving” delays from the ”delayed” model and con-
verting it to the state space description:

xm(k + 1) = Āmxm(k) + B̄mu(k) + R̄m

y0
m(k) = Cmxm(k) (17)

where y0
m(k) models the ”undelayed” output of the

plant.
The behavior of the closed-loop system is defined

by the reference trajectory which is given in the form
of the reference model. The control goal is to deter-
mine the future control action so that the predicted
output value coincide with the reference trajectory.
The coincidence point is called a coincidence horizon
and denoted by H. The prediction is calculated un-
der assumption of constant future manipulated vari-
ables (u(k) = u(k + 1) = . . . = u(k + H − 1)), the
mean level control. The H-step ahead prediction of
the ”undelayed” plant output is then obtained from
Eq. (17):

y0
m(k +H) = Cm

(

ĀH
mxm(k)

)

+

Cm

(

(

ĀH
m − I

) (

Ām − I
)−1 (

B̄mu(k) + R̄m

)

)

(18)

The reference model is given by the first order
difference equation

xr(k + 1) = Arxr(k) + Brw(k)
yr(k) = Crxr(k) (19)

where w stands for the reference signal. The refer-
ence model parameters should be chosen to fulfil the
following equation

Cr (I−Ar)
−1

Br = 1 (20)

which results in the reference model unity gain. This
enables the reference trajectory tracking.

The main goal of proposed algorithm is to find
the control law which enables the reference trajec-
tory tracking of the ”undelayed” controlled signal
(yr(k + i) = y0

p(k + i), i = 1, ..., H). The idea of
MPFC is introduced thought the equivalence of the
objective increment vector ∆p and the model output
increment vector ∆m:

∆p = ∆m (21)

The former is defined as the difference between the
predicted reference signal vector yr(k +H) and the
actual output vector of the ”undelayed” plant y0

p(k)

∆p = yr(k +H)− y0
p(k) (22)

The variable y0
p(k) cannot be measured directly.

Rather, it will be estimated from the available sig-
nals:

y0
p(k) = yp(k)− ym(k) + y0

m(k) (23)

It can be seen that the delay in the plant is compen-
sated by the difference between the outputs of the
”undelayed” and the ”delayed” model. When the
perfect model of the plant is available (Gm = Gp),
the first two terms on the right side of Eq. (23)
cancel and the result is actually the output of the
”undelayed” plant. If this is not the case, only the
approximation is obtained. The model output incre-
ment vector ∆m is defined by the following formula:

∆m = y0
m(k +H)− y0

m(k) (24)

The following is obtained from (21) by using (22),
and (24) and introducing (18):

u(k) = g
−1
0

((

yr(k +H) − y
0
p(k) + y

0
m(k)

))

−

−g
−1
0

(

CmĀ
H
mxm(k) − Cm

(

Ā
H
m − I

)

(

Ām − I
)−1

R̄m

)

(25)

where g0 stands for:

g0 = Cm

(

ĀH
m − I

) (

Ām − I
)−1

B̄m (26)

And the control law of MPFC in analytical form is
finally obtained by introducing (23) into (25):

u(k) = g
−1
0 ((yr(k +H) − yp(k) + ym(k)))−

−g
−1
0

(

CmĀ
H
mxm(k) − Cm

(

Ā
H
m − I

)

(

Ām − I
)−1

R̄m

)

(27)

Note that the control law (27) is realizable if the
matrix g0 is non-singular. This is true if the plant is
stable, controllable and observable.

The stability analysis of the proposed predictive
control can be performed using an approach of lin-
ear matrix inequalities (LMI) proposed in ([19]) and
([16]).

3.2 Wiener based model predictive
control

In this case a Wiener Based MPC (WMPC) is im-
plemented to control the reactor ([10], In press). To
obtain a good representation of the process, the dy-
namic linear block of the Wiener model is obtained
by linearizing of the nonlinear model (1-2) and the
nonlinear stationary block is obtained by approxi-
mating the steady-state solutions of (1-2). Also in
this case, a discrete static compensator was added
(9) to stabilize the process at high concentration val-
ues.

In this case, the objective function to be mini-
mized was

fobj = 35
P
∑

i=1

(CA(i ∗ Ts)− Csp
A )2+

+0.25

M
∑

i=1

(qc(i ∗ Ts)− qc((i− 1) ∗ Ts))
2

Note that the performance of this controller is
poor. This is because along the operative re-
gion, the Wiener model is not a good descrip-
tion of the process. For example, consider that
the eigenvalues of the dynamic model changes from
−1.3510 ± j3.0347 (at the nominal operative point,
qc = 103.41 lmin−1) to −0.0052 + j2.4221 at the
neighborhood of the point A (i.e., a single linear
model can described booth situation).

4



3.3 Nonlinear model predictive con-
trol based on optimization

To compare the proposed control methodology a
nonlinear MPC is used (NMPC). In this control, we
use a discrete version of the model of Eqs. (1-2).
The sample time is Ts = 0.1 min, the prediction
horizon P = 20 and the control horizon M = 5. The
objective function to be minimized is defined as

fobj = 105

P
∑

i=1

(CA(i ∗ Ts)− Csp
A )2+

+103

M
∑

i=1

(qc(i ∗ Ts)− qc((i− 1) ∗ Ts))
2 +

10−2

M
∑

i=1

(qc(i ∗ Ts)− qc(0))
2

where Csp
A is the set point for the controlled variable.

To ensure small steady state error a constraint is
imposed to the control problem as |CA(PTs)−C

ss
A | <

ε. It is necessary to note that in our case the error
was chosen as ε = 0.001. For the implementation
of this scheme we consider that the temperature is
measured and that the disturbances are known at
any time. This last assumption is quite strong, but
it is included to stand in a more favorable situation
in order to compare this controller with the proposed
in this paper.

4 Simulation results and com-
parison of different nonlinear
MBPC control algorithms

Wiener based model predictive control, nonlinear
predictive control based on optimization and fuzzy
model based predictive control have been simulated
and compared with same conditions. We have stud-
ied the behavior of all those different control algo-
rithms by the reference step response and the distur-
bance rejection. The simulation results of set-point
tracking are presented in Fig. 2. Set-point in Fig. 2 is
presented the with the dotted line, WMPC response
is plotted with the dashed line, NMPC response is
plotted with dash-dot line and FPFC with solid line.
The upper diagram represents the output signals of
all different control algorithms and the lower dia-
gram represents control signals. The set-point was
changed from 0.1 to 0.15, back to 0.1, then to 0.05
and again to 0.1 mol/l. The changes were made
every 8 minutes.

The disturbance rejection performance can be
seen in Fig. 3. The unmeasured feed concentra-
tion changes from 1 mol/l to 0.95 mol/l at 8 min
and back to 1 mol/l at 24 min. The unmeasured
coolant temperature decreases from 350◦C to 340◦C
at 16 min and back to 350◦C at 32 min. The ob-
tained simulation results have shown the superior-
ity of nonlinear optimization predictive control ap-
proach especially in disturbance rejection mode due
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Figure 2: Control performance of different algo-
rithms in the case of the reference trajectory tracking
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Figure 3: Control performance of different algo-
rithms in the case of the disturbance rejections

to the measured disturbance. In reference trajectory
mode the quality of performance is very similar to
those obtained by FPFC. The control obtained by
WMPC has given in all modes the poorest results.

5 Conclusion

In the paper a comparison of different nonlinear
MBPC has been presented as a case study for a con-
tinuous stirred tank reactor. The focus is given to
the fuzzy predictive control approach which is com-
pared to Wiener based model predictive control and
nonlinear model predictive control based on opti-
mization. The first two approaches are based on
models given in a form which approximate the pro-
ces nonlinear behavior and the last one is based on
explicit mathematical model of the proces. Both,
WMPC and NMPC are based on optimization which
can be sometimes a bottleneck of the whole algo-
rithm, because it could be very time consuming. The
control law in the case of FPFC approach which is
based on fuzzy model is given in analytical form.
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This makes the approach very easy for implementa-
tion also in programmable logic controllers.
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