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Abstract:-In this paper, a fast dynamical multi-objective evolutionary algorithm (DMOEA) based of the 
principle of the minimal free energy in thermodynamics, was developed to solve mechanical component 
design problems. Its performance was compared with the ε -constraint method and NSGA-II proposed by 
Deb et al. Simulation results show that the proposed evolutionary approach produces excellent solutions for 
mechanical component design problems. 
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1     Introduction 

Most real-world problems are multi-objective 
optimization problems (MOPs), and the effectiveness 
of evolutionary algorithms (EAs) in solving these 
problems has been widely recognized in recent ten 
years [1]. After David Schaffer's first study on 
evolutionary multi-objective optimization (EMO) in 
the mid of 1980s [2], a number of Pareto-based 
techniques and elitist algorithms have been proposed 
in the last decade [3][4], such as Pareto-based 
ranking procedure (FFGA) [5], niched Pareto genetic 
algorithm (NPGA) [6], Pareto-archived evolution 
strategy (PAES) [7], nondominated sorting genetic 
algorithm (NSGA) [8], and NSGA II [9], the strength 
Pareto evolutionary algorithm (SPEA) [10], and 
SPEA2 [11], thermo-dynamical genetic algorithm 
(TDGA) [12].  

Although these techniques performed well in 
different comparative studies, there is still a large 
room for improvement as recent studies have shown 
[9] [13] [14]. 

In this paper, we propose a dynamical 
multi-objective evolutionary algorithm (DMOEA) 
based on the principle of the minimal free energy in 
statistical physics, for solving multi-objective 
optimization problems (MOPs). Two new ideas are 
introduced in DMOEA. One is a fitness assignment 
strategy by combining Pareto dominance relation and 
Gibbs entropy. The other is density distance and the 
Metropolis criterion for selection of new individuals 
in each generation. 

The paper is structured as follows: Section 2 
provides rather detailed descriptions of the proposed 

algorithm. In Section 3, numerical experiments are 
conducted, two measurements proposed by Deb [9] 
are used to compare DMOEA with other three 
well-known multi-objective evolutionary algorithms 
(MOEAS): NSGAII, SPEA, PAES for a number of 
test problems, moreover, the DMOEA is applied to 
solve the two mechanical component design 
problems and comparisons with other methods are 
made. Finally, some conclusions and future work are 
addressed in Section 4.  

2   Description of the DMOEA for 
Multi-objective Optimization  

Without loss of generality, we consider the following 
multi-objective minimization problem with n 
decision variables (parameters), M objectives and k 
constrained conditions:  
Minimize   
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2.1    The New Fitness Assignment Strategy 

In statistical physics, the Gibbs distribution models a 
system in thermo-dynamical equilibrium at a given 
temperature. Further, it is also known that this 
distribution minimizes the free energy F defined by  
 

TSEF −>=<                       (2) 
 



Where >< E  is the mean energy of the system, S is 
the entropy and T is the temperature. The 
minimization of F means minimization of >< E  and 
maximization of TS. It is called “the principle of the 
minimal free energy”. 

Such a statistical framework has been 
introduced into many fields. Since the minimization 
of the objective function (convergence towards the 
Pareto-optimal set) and the maximization of diversity 
in obtained solutions are two key goals in the 
multi-objective optimization, the working principle 
of a MOEA and the principle of finding the minimum 
free energy state in a thermodynamic system is 
analogous. In order to plunge a multi-objective 
optimization problem into such a statistical 
framework, we combine the rank value )(iR  
calculated by Pareto-dominance relation with Gibbs 
entropy )(iS to assign a new fitness )(iF  for each 
individual i  in the population, that is 
  

)()()( iTSiRiF −=             (3) 
where )(iR  is the rank value of individual i , 
which is equal to the number of solution in  that 
dominates solution i [5]. The rank values can be 
computed as follows. 
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way, the R(i)=0 corresponds to a non-dominated 
individual, while a high Rank(i) means that i is 
dominated by many individuals.  
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called the partition function, and N is the population 
size. 

2.2     Density Estimation Technique 

From the expression (3), we easily observe that it is 
difficult to distinguish the different individuals when 
their Rank values are equal. Therefore, we use a 
density estimation technique (which proposed by 
Deb et al[9]) to compute an individual’s crowding 
distance. The crowding distance )(id  for individual 
i is calculated according to the following steps: 
(1) Sorting the solution set I according to each 
objective function in ascending order of magnitude. 

(2)  Noted that ( )idm  is the crowding distance of 
individual i referring to the m -th objective function, 
then ( ) ( ) ∞== ldd mm 1 (the boundary solutions are 
assigned an infinite distance 
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where i
mf  is the m -th objective function, value of 

the i-th individual in the set I , max
mf  and min

mf  are 
the maximum and minimum values of the m - t h 
objective function. 
(3) Calculating the sum corresponding to all 

objective functions, ( ) ( )∑
=

=
M

m
m idid
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, where M  is 

the number of all objective functions. 
A solution with a smaller value of this distance 

measure is, in some sense, more crowded by other 
solutions. So we use the crowding distance to correct 
the expression of fitness value (3): 

( ) ( )idTSiRifitness i −−= )(          (6) 
In DMOEA, the fitness values are sorting in 

increasing order. The individual in population that 
the fitness value is smallest is called “the best 
individual”, and the individual in population that the 
fitness value is largest is called “the worst 
individual”. 

2.3     The New Selection Criterion 
In every generation, we always obtain new 
individuals by genetic operator, but it is worthwhile 
discussing that we use what kind of way to accept the 
new individuals, or eliminate the old individuals, and 
form new population at next generation. Since the 
DMOEA is based on the thermodynamical principle, 
we attempt to employ the Metropolis criterion of 
simulated annealing algorithm (SA)[15] and the 
crowding distance to guide the select process, that is, 
(1) If  ( ) ( )worsenew XRXR < , then X worst ：= X new          
(2) If ( ) ( )worsenew XRXR =  and 
( ) ( )worsenew XdXd > , then X worst ：= X new   

(3) else if exp( )
T

RR newworst− >random (0,1), then 

X worst ：= X new                  
Where worstR  and newR are respectively the Rank 
values of the worst individuals and the new 
individuals.                                            

The structure of DMOEA is described as 
follows: 



  
 Procedure DMOEA 
 
Step1: t=0, generate randomly an initial population 

P(t)={X1 X 2 … X N }, N is the population 
size; 

Step2: Calculate the rank values {R1(t),…, R N (t)} 
of all individuals in P(t)according to (4); 

Step3: Save the individuals whose rank values are 
equal to zero; 

Step4: Calculate the fitness of all individuals 
according to equation (6), and sort them in 
increasing order;  

Step5: Repeatedly execute step6 to step11 until the 
termination conditions are satisfied; 

Step6: t=t+1; 
Step7:Randomly select m1 individuals to do 

multi-parent crossover and m2 individuals to 
mutate, and to generate n new individuals; 

Step8: Compare the new individuals with the worst 
individuals, and accept the new individuals 
according to Section2.3; 

Step9: Calculate the rank values {R1(t),…, R N (t)} 
of all individuals in new population P(t) 
according to (4); 

Step10: Save the individuals whose the rank values 
are equal to zero; 

Step11:Calculate the fitness of all individuals 
according to equation (6), sort them in 
increasing order, and record the worst 
individuals; 

Step12: Output the all results. 
 
Remark:  In step 7, multi-parents crossover 
originated appeared in Guo T. et al [16].Randomly 
select m individual X1′, X2′,…,Xm′ from population P(t) 
to form a new individual s ,              
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can guarantee searching more extensive range, even 
including the boundary). 
 

3  The Numerical Experiments  

3.1     Test Problems 

To verify the efficiency and effectiveness of the 
DMOEA, we have conducted many numerical 

experiments and compare its performance with 
several other MOEAs: NSGA II, SPEA,PAES.  

(1) Nine Difficult test problems from Deb [3][9] 

SCH1 ， FON ， POL, KUR ， ZDT1 ， ZDT2 ，
ZDT3,ZDT4,ZDT6 
The following is the two mechanical component 
design problems;  

(2)Two-Bar Truss Design 

This problem was originally studied using the 
ε -constraint method [17], NSGAII [3] and Azarm, S. 
et al [18], John Eddy et al[19]. The design of truss 
(see Fig.1) can be written as the following 
two-objective minimization problem with three 
variables (y is vertical distance between B and C in 
m, 1x  and 2x  is the cross-sectional areas of AC 
and BC respectively in m2, volumef  is the overall 
volume of material used, ACstressf ,  is the stress in 
bar AC). The system is subject to three inequality 
constraints. The first two are constraints on the 
objective function values, the third constraint limits 
the stress in bar BC. 
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(3) Gear Train Design 

  A compound gear train is to be designed to achieve 
a specific gear ratio between the driver and driven 
shafts (see Fig.2, is a copy of Fig.293 from Deb [3]). 
The objective of the gear train design is to find the 
number of teeth in each of the four gears so as to 
minimize (a) the error between the obtained gear 
ratio and a required gear ratio of 1/6.931[20] and (b) 
the maximum size of any of the four gears. Since the 
number of teeth must be integers, all four variables 
are thus strictly integers. By denoting the variable 
vector ),,,(),,,( 4321 fabd TTTTxxxxX == , we 



write the two-objective optimization problem as 
follows: 
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Fig.1 A two-bar truss. This is a reprint of Fig. 3 from 

John Eddy et al [19] 
 

 
Fig.2 A compound gear train 

3.2 Results and Discussion 

In order to compare with NSGA II, SPEA, PAES, we 
use the two performance metrics defined in [9] to test 
DMOEA, and the setting of parameters is basically 
the same as that in [9](see Table 1). The algorithm 
has been coded in C language and implemented on a 
Pentium PC 500MHz in double precision arithmetic. 
For each problem, 20 runs with different random 
seeds have been carried out. 

Table 2 shows the mean and variance of the 
convergence metric obtained by four algorithms: 
DMOEA, NSGA-II (real-coded), SPEA, and PAES. 
DMOEA is able to converge better in all problems 
except in POL, where NSGA-II found better 
convergence. In all cases with DMOEA, the variance 
in 20 runs is also smaller (In the table, the zero 
variance means that the variance is less than 10-6).  
Table 3 shows the mean and variance of the diversity 
metric obtained by all four algorithms. DMOEA 
performs better than NSGA-II (real-coded), SPEA 
and PAES in all test problems except in KUR, where 

NSGA-II found better diversity. 
Fig.3 shows the obtained non-dominated 

solutions by DMOEA for the two-bar truss problem. 
The figure shows that DMOEA can obtain widely 
spread solutions when compared to the ε -constraint 
method and NSGAII (see ref. [3]) 

Table 4 shows the extreme solutions (marked as 
‘EE’ and ‘DD’) obtained by DMOEA for the gear train 
design, which indicates the power of the DMOEA in 
finding a wider spread of solutions when compared to 
the NSGA II (the extreme solutions is marked as ‘E’ 
and ‘D’ [3]). What is also important is that all solutions 
of the NSGA II (including ‘EE’ and ‘DD’) have been 
found in just one simulation run of the DMOEA. 

 
Table 1  Parameter settings 

 
Population Size: N=100 
Crossover: Multi-parent crossover, the crossover 
probability is 0.1(different from [9]) 
Mutate: uniform mutate, the mutate probability is 1/n 
(where n is the number of decision variables)  
The maximum generation: g=250 (25000 function 
evaluations) 
Temperature: T=10000. 
 

Table 2  The mean γ (first row) and variance 
2
γσ (second row) of the convergence metric 

Algorith
m SCH1 FON POL KUR - 

0.000408 0.002245 0.034703
4 0.022262 - 

DMOEA
0 0 0.000043 0 - 

0.003891 0.001931 0.015553 0.028964 - NSGA-|| 
(Real-co
ded) 0 0 0.000001 0.000018 - 

0.003403 0.125692 0.037812 0.045617 - 
SPEA 

0 0.000038 0.000088 0.00005 - 

0.001313 0.151263 0.030864 0.057323 - 
PAES 

0.000003 0.000905 0.000431 0.011989 - 

Algorith
m ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

0.000150 0.000119 0.000493 0.000290 0.000520
DMOEA

0 0 0 0.000001 0 

0.033482 0.072391 0.114500 0.513053 0.296564NSGA-II
(Real-co
des) 0.004750 0.031689 0.007940 0.118460 0.013135

0.001799 0.001339 0.047517 7.340299 0.221138
SPEA 

0.000001 0 0.000047 6.572516 0.000449

0.082085 0.126276 0.023872 0.854816 0.085469
PAES 

0.008679 0.036877 0.000001 0.527238 0.006664



Table 3  The mean ∆ (first row) and variance 
2
∆σ (second row) of the diversity metric 

 
Algorith
m SCH1 FON POL KUR - 

0.202006 0.351841 0.272671 0.580337  - 
DMOEA 

0.000416 0.000345 0.001789 0.000297 - 

0.477899 0.378065 0.452150 0.411477 - NSGAII 
(Real-cod
ed) 0.003471 0.000639 0.002868 0.000992 - 

1.021110 0.792352 0.972783 0.852990 - 
SPEA 

0.004372 0.005546 0.008475 0.002619 - 

1.063288 1.162528 1.020007 1.079838 - 
PAES 

0.002868 0.008945 0 0.013772 - 

Algorith
m ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

0.321018 0.322464  0.558973 0.487381 0.313715
DMOEA 

0.001055 0.000589 0.003799 0.007740 0.000534

0.390307 0.430776 0.738540 0.702612 0.668025NSGAII 
(Real-cod
ed) 0.001876 0.004721 0.019706 0.064648 0.009923

0.784525 0.755148 0.672938 0.798463 0.849389
SPEA 

0.004440 0.004521 0.003587 0.014616 0.002713

1.229794 1.165942 0.789920 0.870458 1.153052
PAES 

0.004839 0.007682 0.001653 0.101399 0.003916

 
 

 
Fig.3 Optimized solutions obtained using DMOEA 

for the two-bar truss problem 
 
Table 4  Obtained extreme solutions by DMOEA 
for the gear train design 
 
Solution x1  x2  x3  x4 Max.diameter(cm)  Error 

 
EE    15  15  39   40     40    2 .36(10-9) 
E     12  12  27   37     37    1 .83(10-8) 
 D    12  12  13   13     13    5 .01(10-1)    
DD   1 2  1 2  12  1 2     12    7. 32(10-1)  
 

4    Conclusions and Future Work 

In this paper, we have presented DMOEA, a high 
performance evolutionary algorithm for multi- 
objective optimization problems that employs a new 
fitness assignment strategy and a new accepting 
criterion based on the principle of the minimal free 
energy. We have conducted experiments by computer 
simulation to explore the applicability of DMOEA to 
the complex problems of multiobjective optimization. 
Our computational experience shows that the 
proposed DMOEA can obtain very promising results.       
In addition, the procedure can be easily extended to 
solve other real-world application problems with 
different objectives. Therefore in the future, the 
applicability of DMOEA to more difficult and 
complex types of real-world problems, including the 
combinatorial optimization problems must be 
studied.  
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