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Abstract

For a class of neural dynamic system with time-varying perturbations in
the time-delayed state, this article studies the periodic solution and global ro-
bust exponential stability. A series of new criterions concerning the existence
of the periodic solution and global robust exponential stability are obtained
by employing the Young’s inequality, Lyapunov functional and combine with
some analysis techniques. At the same time, the global exponential stability of
the equilibrium point of the system is also obtained. Several previous results
are improved and generalized. Compared with existing results, our results are
shown to be more effective than other ones. In addition, these results can be
used to design globally stable neural networks and periodic oscillatory neural
networks, and they are easy to be checked and be applied in practice.

1. Introduction

In recent years, there has been increasing interest in study of neural networks since
they have a wide range of applications, for example, pattern recognition, associa-
tive memory, and combinatorial optimization. These applications heavily depend
on the dynamical behaviors of the neural networks. Specially, cellular neural net-
works (CNNs) has attracted the attention of scientific researchers [see 1-17]. The
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circuit diagram and connection pattern modelling a CNN can be found in Refs.[1,
2]. Tt is well known that, In the implementation of artificial neural networks, due
to the finite switching speed of amplifies, time delays are unavoidably encoun-
tered[3]. time-delayed perturbations may induce system instability, oscillation or
degraded performances. On the other hand, during the implementation on very-
scale-integration(VLSI) chips, external disturbance and parameters perturbation
can also destroy the stability of the neural networks. Very recently, Liao[4] has
investigated the robust stability of DCNNs with constant coefficient perturbations
and constant delays and obtained some important results. However, to make the re-
sult applicable, This condition that the time-delay 7;;(#) is time-invariant obviously
limits the use of the result, since these perturbations and time-delays existing in
most practical engineering systems are seldom time-varying bounded function and
time-delays satisfying TZ{j(t) < 1. Based on the neural networks system with these
uncertainties, the study of the stability of the cellular neural networks with time-
varying perturbations and time-varying delays possess an important significations
in practice. the problem of obtaining condition of robust stability is of great theo-
retical and practical interest. Therefore, the main purpose of this paper is to study
periodic solution and global robust exponential stability(GRES) for a class of cellu-
lar neural networks with time-varying delays and time-varying perturbations, where
time-varying perturbations and time-varying delays are not periodic, only the con-
trol input I;(¢) is periodic. As a spacial case, when the control input item I;(¢) and
time-varying perturbation item are time-invariant, we obviously obtain the global
robust exponential stability of the equilibrium point of the system. These results
improve and generalize those given in the earlier references[4-8].

The organization of this paper is as follows. In section 2, we give some prelim-
inaries. In section 3, we state our main results and proofs. In section 4, we shall
show an example to illustrate effectiveness of our main results. In section 5, we give
some concluding of the results.

2. Preliminaries

In the section, we state our problem, definitions and some lemmas.
We consider the robust stability of the following CNNs with time-varying delays

zi(t) = —ai(t)zi(t) + il wij () fi(z;(£) + il wl(t) g (z;(t — 7i5(t))) + Li(t),
Ay = {A(t) = diag(ai(t))nxn : A< A(M) <A, de g <ait) <@},
Wy = {W(t) = (wij(t))nxn : WLSW(E) S W, i e w;; < wig(t) < wg ),
WL = {W7(t) = (wj;(t))nxn: W <WT(t) <

\

where i,j = 1,2,--- ,n. A, AW, W,W", W  are all constant matrix, and A > 0;
0 < 75(t) < 7 and 7';]- (t) < &;j <1; fi(z;(¢)) and g;(z;(t —7i;(t))) denote the output



of the j-th unit at time ¢ and ¢ — 7;;(t), respectively; Only I;(t) is a w — periodic
function, i.e. I;(t + w) = I;(t), for any ¢t € R.
The initial condition of system (1) is as follows

i(s) = @i(s), s € [-7,0]. (2)

where ¢; € C([—7,0],R), C([—T,0],R™) be the Banach space of continuous function
which map [—7,0] into R" with topology of uniform converge.
We denote the solution of system (1) through (0, ) as
I(t, (P) = (H?l(t, (70)7 H?g(t, (P)a e 7xn(t7 (P))

Set
xt((p) :$(t+9790)7 e [_7-70]7 tZO

then, we have z;(p) € C, Vt > 0.
For any z(t) € C([—7,0],R™), we define its norm as

ol = sup (Z m-(t)w) p, 3)
=1

—7<1<0
where p > 1 is a constant.

Throughout this paper, we assume that the activation functions f;, g; (j =
1,2,--- ,n) satisfy the following property.
(H1): There exits positive constants mj, n; (j =1,2,--- ,n.) such that

|fi(x) = fi)| <mjlz —yl; gi(2) —gi () < njlz —yl, Vz,yeR.  (4)

(H2): 0 < 735(t) <7 and 7;;(t) < 635 < 1, (i,5 = 1,2,-+- ,m.).
From (1), we can easily see that the solutions z(t,¢) and z(t,v) of system (1)
through (0, ¢) and (0,1)) respectively satisfies the following equation

fi(zi(t, o) —zi(t,9) = —ait)(@i(t, @) — zi(t, )
+ ]; wij(O)[fi (x5t @) = fi (2t )]

+ il wl;()]g;(z;(t — 7ij(t), ) — g5(;(t — 73;(2), %)),
]:
(5)

For the sake of convenience, we define

wiy = max{|w;;|, [Wi;|}, wij = max{|wj], [w;]}.
To prove our main results, we need to introduce the following definition and lemma.

Definition 1. The periodic solution x*(¢,1)) of system (1) is said to be GRES,
if for any initial state ¢ € C' and for any A(t) € A, , W (t) € W, W7 (t) € W], there



exist two positive constant A > 0,k > 1, the state solution z(¢, ) through (0, ¢)
satisfies

lz(t, ) — 2* (£, 9) | < kllp —plle™, vt > 0. (6)
Lemma 1.(Young’s inequality) Assume that ¢ > 0,6 > 0,p > 1 % + % =1,
then the following inequality:
1 1
ab < —af + b7 (7)

p q
holds.

3. Main results and Proofs

In this section, we shall show our main results and proofs.

Theorem 1. Assume that the hypothesis (H1) and (H2) hold, and suppose
further that

(H3): there exists constants g;;, ¢;;, 7ij, r;; € R (1,5 =1,2,--- ,n.) and A; >0
(j =1,2,--+ ,n.) such that

n P=a}; PTi
> |(p— l)w[j* p=1 njpfl ]w* Yim,

j=1
n poaiy P LN
+> |(p— l)w;‘j Im P 4 b LwT, *qﬂn < pa,,
i=1
for all 4 = 1,2,--- ,n. then the system (1) has a unique periodic solution z*(¢, 1))
which is global robust exponential stable, where m;,n; (j = 1,2,--- ,n.) are positive
constants in (H1),
w” = max{|w”| @i}, w; = max{|wz~7j|, |@ZJ|}, i, =1,2,--- ,n.
Proof. Since
n p— q” p_ri‘z'
* T 1 i
—pa; —{—];1 (p— 1) T p—1 n]l’ + ’U)}quj ’I”Ifl,Z
n , Pt % N1 gt T
+ '21 (p = Dwjy 7=t my" " + Jr=gwy ™ in ™ | <0,
]:
forall: =1,2,--- ,n. We can choose a small € > 0 such that
n p— qu _.Lp_r?
*Tpo1 - i
(e — pa;) +]§1 (p— Dwj* 7 nt" +3 w;‘l% m;’
n P—q45 P*Tij N1
+ '21 (p— l)w;‘j p—1 mjpf —I—e”——l 5; wJTZ*qﬂn <0
]:




foralls=1,2,--- ,n.
Construct the Lyapunov functional

V() = Y ety o) — @it )|
i=1

n n

A (ATHINAE t e(s+T
+ZZ 1 —]5.-wji q]lnif /t » |$i(5,(P) — $i(5,¢)|p6 (s+ )ds,
; ji —Tji

Set .
Vi(t) = Xie|milt, ) — ai(t, )7,
i=1

n n t
Aj wqt TH T
V) = 00 S [ (s — (o) s,
i=1 j=1 Je t—ji(t)
then
V(t)) = Vi(t) + Va(t).

Calculating the upper right derivative DTV of V along the solution of system (3),
we have

DV (t)](s)

e’ 30 Nilwi(t, @) — zi(t, )P + e 3 pAilwi(t, @) — mi(t, )P

=1 =1

xDF|zi(t, ) — zi(t, )|
et 30 Nilwi(t, @) — wi(t, )P 4 et > pAilwi(t, @) — wi(t, )P~
=1 =1

xsign[z; (t, ) — i(t, )] [zi(t, @) — @i(t,)]
ee” Y Nilzi(t, @) — wi(t, )P + e Y pAilzi(t, ©) — z(t, )P~
2 .

= =1

xsign[zi(t, @) — i(t, p){—ai(t)[i(t, ) — i, )]
+ 20 wij ()t @) — fi(z;(t,4))]

Jj=1
n

+ 20 wi(0)g; (25 (t = 75 (1), ) — g5 (t = 7ij (1), )]}

i=1
t

IN

IN

IN

Xile — pay)|zi(t, @) — zi(t, ¢)|P + e jzlp/\ilﬂﬂi(t, @) — zi(t, )P~

wim;lzi(t, o) — z;(t, )] + Zn‘,l wi; njlzi(t — 7i5(t), @) — z;(t — 7ij(t), w)ll
iz

-

-
Il
—

68

IN

M=

X
1

Ai(e — pa;)|zi(t, @) — (L, p)|P

<.
Il

egt

-

-
Il
—

IN

+etp Y [Ai S wiymglei(t, 9) — @ity )P (1 ) — a5, ¢>|]

i=1 j=1



+e'p é é Fnglai(t, ) — xi(t, )P Ha(t — i (1), ) =z — 7(), wn]
=tﬁ§:Mk—p%Nm@w)—w@#Np
wwﬁ; i 5y Jri(tg) — m(h )P mww>jww1

r *

P=aj; _Tiz'

n
+pet 37 Aizw[j* vy Tzt ) — mit )P
: =

955 i
X wi* v n |zt —7ii(t), o) — 2t — Tij(t)vwﬂl :
By Lemma 1, we have

n

DVl < et 30 Nile — pay)lzi(t, ) — zi(t, )P

Mi
I\

n n B
-wWZ{MQBMwW?mm@—%mww
]:

ij
w7 my it o) —xi(ta¢)|””

n n
+pet 3 {Ai > [zlnwfy*q”” Pt — 7 (t), ) — @j(t —
i=1 j=1
B p—ajj p_j;j
R N A () —ﬁi(ta¢)|p]}
n
= e 30 Nile — pay)|wi(t, ) — @it )P

@
Il
—

_l’_
Cb“)
M=

@
Il
—

.
Il
—

Njwim |z (t, o) — zi(t, )P
p—Tij

(p— DAwly 7 1m, |l ) — wat, )

_l’_
Qm
Mz

i=1j=1
LA *q¥. 7‘*‘(1'
et 30 30 Ajwl in wi(t — 15i(t), @) — it — 7ji(t), )P
i=1j=1
n n P—q p_r{j
+et 30 3 (p = DXl 7" |zt o) — wi(t, )P
i=1j=1
n n L - T;J
= et 21 (e —pai))hi+ > |(p— DXw];" =1 0" + Xjwr,%"m
1=

J=1

X
B
=~
1§,

—z;i(t, )P
P=a;j Ljij
DXjw; =m0 ity ) — @4t ) [P

_l’_
Qm
M=

@
Il
—

.
Il
—

_l’_
Qm
M=

@
Il
—

.
Il
—

w g T
AjwT i i (t = 750(t), @) — @it — 75(), ) P



Again, note that 7/;(t) < d;; <1, 7(t) <7 (i,5 = 1,2,--- ,n.), we have

D)l = et 21 > e 2 i (1) - i)
i=1j5=
n n
ety S 2 wr, i, et 0|zt — 155(t), @) — it — 7i(2), ) [P
i=1j=1

x(1 - T;Z(t»
n n
= 1Y 3 Tl e it ) — (1)

i=1j5=1

et S S e = 70, ) — i, PO

From (8) and (9), we get

DYV ()5 < DYVi(t)lm) + DT Va(t)|m

«
p—ai; PTij

n n
< edz (e — pa; >\Z+Z p—1)A Z]*plnpl +>\w*q“mZ
; ]:1

J
P—rij

+e Y Y (o= DAwf; mEm it ) — @it §))

i=1 j—l
LA — 5 Tl G it ) — it ) P
i=1 j=1
n p—aq;;  PTTij A -
= ZA —pa)+ Y (0= Dl e+ A—Zw;iqﬁm:“]
Jj=1
- P45 PrTij )\ ; 1 * *
+ Z w;‘j p—1] mjp—l + 657')\_].1 — 6”w;i*qjin;"gz]
j=1 i 7t
x|zi(t, ) — @i(t, )P
< 0, (10)
Therefore,
V(t) <V(0), t>0.
Since
et 1r<m<n N }Zm (t, @) — zi(t, )P <V (t), t>0.
V(O) = Z )\Z'|£Ei(0,(p) — ( ) T *q“n Jz
i=1 i=1j=
J2, 0 (s, 0) = wi(s, p)res s



wq T
< ax () 3 [(0.9) = w0 +67 32 pug ]
i=1j=
x f |$z(3 @) — zi(s, ) |Pe**ds
n n )\
< | max {Aif + e Y0 30 = T*q””“ I —)IIP
1<1,< 1,:1]:1
Therefore,
max {\;} + Te T*qﬂn i
) ,1<i<n P )
leztw zi(t, )P <e”* lle =)l
min {\; }
1<i<n
This implies that
_£y
z(t, ) — z(t, P)|| < ke 77|l — )|l (11)
where
max{A}—i—Te”Z Z 1 J T*qﬂn i
<n i=1j=
k= Y } > 1.
1r<nzl<nn
We can easily obtain from the formula (11) that
le2(0) = 2o < ke 7o — . (12)

Now ,we can choose a positive integer m such that

ke » (M) < (13)

M|>—~

Define a Poincaré mapping
pP:C([-1,0,R") — C([-7,0],R")

by Py = z,(p), then we can derive from (12) and (13) that

1
1P = Pl < Sl =9l

So, P™ is a contraction mapping, Thus, there exists a unique fixed point z* €
C([-,0],R™) such that
Pz = 1",

Note that
P"(Pz*) = P(P™z*) = Px™.

It implies that Pz* € C([—7,0],R™) is also a fixed point of P™. So,

Pz* =z*, ie x,(z")=2a"



Let z(t,z*) be the solution of system (1) through (0,z*), obviously, z(t + w,z*) is
also a solution of system (1) and note that

Tprw (%) = zp(2y(27)) = 2(2¥), forall ¢ > 0.

So,
z(t +w,z*) = z(t,z*), Vt>0.

This shows that z(t, z*) is exactly one w — periodic solution of system (1) and it is
easy to see from (12) that all solutions of system (1) converge globally exponentially
to it as ¢ = 4o00. The proof is completed.

Corollary 1. Assume that the hypothesis (H1) and (H2) hold, a;(t) = a;, w;;(t) =
wij, wy; (t) = wy, Ii(t) =I; (i,5 = 1,2,--- ,n.) are all time-invariant, and suppose
further that

(H4): there exists constants g;;, 4 Tij, 7 €ER (4, =1,2,--- ,n.) and A; >0
(7 =1,2,--+ ,n.) such that

n p—ai; PN A
— : .. Tii
S lp—Dwl* 7T n Pt + FwhYim

= tJ J Ai g 1
n * Pty % 1 A *q T3
+ 2 |(p— Dwjj vt m, + 1—6ji)\_]ing'i ing"t | < pa;,
i=1
for all = 1,2,--- ,n. then the system (1) has a unique equilibrium point z* which
is global robust exponential stable, where m;,n; (j =1,2,--- ,n.) are positive con-

stants in (H1).

Remark 1. Liao [4] study the system (1) in case that the activation func-
tion f; = g; (j = 1,2,--- ,n.) is monotone increasing and bounded and satisfying
Lipschitz condition and 7;;(t) = 7;; = constant. obtain the following result:

Theorem A: If there exist positive numbers A, A2, -+ A, and 71 € [0,1], o €
[0, 1] such that

n

_ E L T2r1, % 72(1-r1) % T2, T % r2(1-r2) 1%
1<i<n | a;\; “
4N T
where
¥ o= - Tx __ T —T .
Wi = max{|wij|, |wz]|}7 Wi = max{|wij|a |wij|}7 hj=1,2,---,n.

then (1) with (2) has a unique globally robust stable equilibrium z* for each constant
input I = (I, I,--- ,I,)T € R™.

Clearly, this result is a special case of corollary 1. In fact, in corollary 1, we take
qz‘j =q;; =1, r;j =2 —2r, r;‘j = 2 — 219, again take f; = g;, forall j =1,2,--- ,n,
then m; = n; = L;, we can obtain the theorem A above.



Note that Theorem A need the activation functions to be monotone and bounded,
our results do not request these assumptions. Therefore, our model generalizes those
in [4].Moreover, our results are shown to be more effective then theorem A (see the
example in next section).

Remark 2. Corollary 1 contain many previous results such as [5-8].

4. An Example
Consider the following system:

1
ry(t) = —agwi(t) + war fr(z1(t)) + waz fa(za(t)) + whgr(z1(t — 1)) + wisga(w2(t — 72)) + 2.

We take f; = g; = 0.5(|]z + 1| + | — 1|), 735 = 7; = const., (1,7 = 1,2.), then
m; =n;j =105 =0, (1,7 =1,2.). Set

a; 0 0.95 0 : a 0 2 0
A: = , A: — ,
0 ap 0 2 0 dy 0 3
oo [wnown | [ 015 —01 wr o [(whowl | _ (02 005
T\ wy wy 02 005 | w}, wh, 0.1 0.3
- w1 W12 _ 0.2 0.3 W w{l 11_){2 _ 0.3 0.1
Wy W 04 01 ) wh, W}, 02 0.1
— wi Wi _ 0.2 0.3 W — wi* wiy* _ 0.3 0.1
wh,  wh, 04 01/’ Wit wh,* 02 0.3

where

In theorem 1, we take p = 2, choose \; =1 (i =1,2.), ¢11 = q12 = 1, go1 = g22 = 2,
and ¢qi; = ¢iy = ¢5; = ¢35 = 1, then we obtain

2

|:w1—]* ql n] 1] + 2 wt QJI ] E : |:w1<]2 qu 1 4 ]w;'l*qjlnljl
1 )\1 = 1— 5]1 )\1

M-

J

2
[w{j*Hi‘j n w;qu'l} +3 [ r20 *%1] — 1.66 < 1.9 = 24,
1 7=1

I
[M]~

<.
Il

10

(t) = —a1mi(t) + winfi(z1(t)) + wizfo(z2(t)) + wiigr(@1(t — 71)) + wisge(z2(t — 7)) + 1,



and

2
[wg *2— Qz]n2 21+>‘ *%2 J2:| + [M;Q q2j 2 r2j + 1 )‘] rQ*qunr
2
j j Ao Z J 1— 42 Ao e/

M)~

1

<.
Il

2
[w%*?’q% + w}fzw} + [w§j2_q2j + %7'2*'];2] =301 <4 =120,
1 =t

|
[M]~

<.
Il

Clearly, the conditions (H1)-(H3) hold. However, corresponding to theorem A, e.g.,
theorem 1 in [4]).

2

1 2(1— * 1-

o3 (M + AT+ AL+ AT )
—

o = max
1<e<2
1 * T % T %
&; ]:
= a) ,0.5} > 2.
o X{0 g5 0-5)

So, the condition of theorem A does not hold. This example shows that our results
improve and extend those in [4].

5. Conclusion

In this paper, we have given a family of sufficient conditions for global robust
asymptotic stability and global robust exponential stability by applying Young in-
equality and general Lyapunov functional, and the conditions possess highly impor-
tant significance in some applied fields, for instance, they can be applied to design
globally exponentially stable CNNs with time-varying delays and easily checked in
practice by simple algebraic methods. These play an important role in the design
and applications of DCNNs. In addition, the methods in this paper may be applied
to some other systems such as the systems given in Refs.[9-14] and so on.
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