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Abstract: This paper presents an enhanced technique for the adaptation mechanism of Fuzzy Model 
Reference Learning Control (FMRLC). the authors proposed a modification to the movement of the 
auto-attentive area. The modification enhances the transient response. However, it was still unsatisfactory 
especially if the input scaling factors were selected very large. The slow transient response is due to the 
chattering effect found in the control effort. In this paper, the results of applying the experience model to the 
enhanced FMRLC, the controller was able to reduce the chattering effect in the control effort, and hence in 
the transient response of the control system. Simulations are carried out using an induction motor to 
verify the proposed algorithm’s performance.  

1 INTRODUCTION 

Self Organizing Fuzzy Controller (SOFC), presented 
in [5], reduces the fuzzy controller design 
dependency on expert knowledge and provides on-
line adaptation of the controller parameters to 
compensate for process parameter variation. The 
algorithm adapts the nonlinear control surface 
identified by the rule base of the fuzzy controller, by 
modifying the centers of the output membership 
functions 

Passino et al.  proposed an adaptation mechanism 
[2,3,4,6] similar to SOFC, but, they embedded a 
reference model that describes the desired 
performance. Passino algorithm was referred to as 
Fuzzy Model Reference Learning Control 
(FMRLC). Longya et al. applied FMRLC algorithm 
to an induction motor in a speed control loop [7]. 
The controller proved high torque rejection 
capability and its potential to compensate for 
parameter variations. Moreover, in [7], the authors 
has presented a comparative study between FMRLC, 
direct fuzzy controller, and on-line fuzzy tuning 
scheme. The results show outstanding performance 
for the FMRLC. 

Passino et al. [6] proposed one key modification to 
the FMRLC to increase the system accuracy without 
increasing the computational burden. The 
modification produces a FMRLC algorithm with the 

ability to focus the attention to the area that is 
currently of interest (the area that has active 
adaptation) and shifts this area as the attention 
moves to other areas. The term Auto-Attentive 
approach was added to the FMRLC to describe this 
new algorithm. The results showed that the proposed 
modification succeeded in tracking a trajectory 
composed of two sinusoidal waves with different 
frequencies.  

The authors proposed a modification to the 
movement of the auto-attentive area. The 
modification enhances the transient response. 
However, it was still unsatisfactory especially if the 
input scaling factors were selected very large. The 
slow transient response is due to the chattering effect 
found in the control effort. In this paper, the results 
of applying the experience model to the enhanced 
FMRLC using auto-attentive technique are 
introduced. The paper introduces new modifications 
to enhance the auto-attentive mechanism. The 
modification allows the auto-attentive active region 
to shift faster to the area that is currently of interest. 
This would accelerate the learning process and 
enhance the transient control action. In addition, the 
paper introduces a new algorithm to update the rules 
in the unexplored area of the universe of discourse 
when the auto-attentive region moves. The paper is 
organized as follows: In section II the auto-attentive 
approach is discussed. Section III is devoted to the 
description of the proposed modification to the 
movement of the auto-attentive area. Section IV the 
simulation results of the proposed algorithm and the 
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conventional one using induction motor speed 
control drive, are presented 
 

2 AUTO-ATTENTIVE MECHANISM 

The auto-attentive mechanism for FMRLC allows 
the centers of the input membership functions to be 
shifted on-line.  
Consider a fuzzy controller with two inputs given 
by: 
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where . 
For FMRLC the membership functions cover the 
dynamic range of each input by using the input-
scaling factors (input scaling factors are used to 
scale the inputs to the range [-1,1]). However, for 
the auto-attentive strategy, the input membership 
functions cover only a part of the dynamic range. If 
the active learning region (the currently fired rules) 

hits the borders of the auto-attentive active region, 
the auto-attentive active region will move one step 
in the direction of the movement of the active 
learning region. This shift is made by moving the 
centers of the input membership functions one step 
towards the segment of the input dynamic range that 
is currently of interest. The centers of the 
membership functions for each input are given by: 
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The centers of the output membership functions are 
given by: 
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In addition to the adaptation of the centers of the 
output membership functions given by equation (6), 
these centers are allowed to be reset if the auto-
attentive region moves (i.e.  or/and 

) as follows: 
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Equation (8) indicates that the centers of the output 
membership function at the unexplored area are set 
to zero reflecting no information about the control 
surface in this area. Equation (11) shows how the 
remaining centers of the output membership 
functions are shifted toward the area that is currently 
of interest.  

This algorithm has three disadvantages that 
affect the transient performance of the system: 
(1) The movement of the auto-attentive active area is 
slow (single step/sample); 
(2) The algorithm will not be able to build enough 
stable control action to match the transient 
performance of the reference model. 
(3) The system is not able to memorize the overall 
control surface. 
The following section proposes a possible solution 
to the first disadvantage. 

3 ENHANCED AUTO-ATTENTIVE 
APPROACH 

 
As described in section II, the auto attentive 

active area moves a step of width  ( K  and  

have values of –1,0,1) in the direction of the 
movement of the active learning region when the 
active learning region hits the boundaries of the 
auto-attentive area. In the case where the area that is 
currently of interest is too far from the active 
learning region, the movement mechanism will be 
very slow. As an example, assume the auto-attentive 
active region covers just 1% of the dynamic range of 
two inputs with 11 membership functions for each 
input. In this case, if the auto-attentive region is at 
the left edge of dynamic range, and the area that is 
currently of interest is at the right edge, then it 
would take 1000 samples from the controller to 
move the auto-attentive region to the area of interest.  

w e cK

The proposed modification is to shift the centers 
of the input membership functions similar to 
equation (4) but with  and  calculated as 
follow: 
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Equation (14) indicates that if the step width is 
larger than the entire auto-attentive area the whole 
centers will be rest to zeros. In the case where the 
step width is less than the auto-attentive region then 
just the part that is moved to the unexplored area 
will be reset and the other part will be shifted to the 
area that is currently of interest  

c
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4 SIMULATIONS 

 
 The induction motor model used for the simulation 
is given in [7]. The parameters of the model are 
given in Table (1). 
 

 
Description Value Units 

Rated Power 0.5 Hp 
Rated current 1.3     A 
Rated speed 1500   rpm 
Rated line voltage 208      V 
Stator inductance 0.397416 H 
Rotor inductance 0.378417 H 

     Mutual inductance 0.372084 H 
Stator resistance 9.652065 Ω 
Rotor resistance 0.378417 Ω 
Moment of inertia 0.00439811 kg-m2 

viscous damping  
constant 

0.00028587 N-m-s 

Number of pole pairs 2  
 

Table (1) Induction motor parameters 
 

To examine the performance of the auto-
attentive approach and the enhanced one, and to 
study the advantages and the drawbacks of such 
algorithms the input scaling factors were set to high 
values (the auto-attentive area covers 0.1% of the 
dynamic range of the inputs).  Figures (1) and (2) 
show the system response when using the 
conventional auto-attentive approach and enhanced 
approach respectively. It can be noted that both of 
them have very poor transient performance. 
However, the latter is significantly better than the 
former. Note that neither algorithm is able to build 
sufficient current at the transient to match the 
transient performance of the reference model known 
that it is reachable performance by the induction 
machine. This is because of the adaptation 
mechanism as indicated before. The AF curves in 
both figures are high. AF curve shows that despite of 
the high adaptation effort the control mechanism is 
not able to achieve the desired performance.  

Figures (3) and (4) show the response of the auto-
attentive approach with an experience model using 
the conventional and enhanced mechanisms 
respectively. In both cases the experience model 
rule-base was built using average knowledge about 
the induction motor. The transient performances 
have been improved significantly comparatively to 
the controller without an experience model. This 

improvement is due to the ability of the mechanism 
(in both cases) to load near-optimal control action 
from the experience model to the auto-attentive area 
as it moves. Hence, the adaptation mechanism starts 
to update the rules at the auto-attentive area and 
update the information saved in the experience 
model at the same time using the learning 
mechanism of the experience model. Note that the 
AF curves in both figures have less value than in 
figures (1) and (2) which indicate less adaptation 
effort and high performance mechanism. 

Figures (3) and (4) indicate that the two algorithms 
have superior rejection of the variation of the torque 
load (note the performance at the transient before 
and after the torque load variation). In the case of the 
enhanced auto-attentive algorithm the auto-attentive 
area goes directly to the area that is currently of 
interest and loads all the rules at the rule-base with 
values from the experience model. If the values are 
not optimal it needs more time to adapt them. For 
the conventional algorithm, the slow movement 
allows for better response to such situation. 
However, The learning process of the experience 
model in the enhanced algorithm is more efficient 
where it directly target the designated area of the 
control surface. On other hand, the learning 
mechanism of the experience model in the 
conventional algorithm is targeting other areas in the 
first few samples, which may destroy the collected 
information in the experience model in earlier 
training phases. To prove that the enhanced 
algorithm has better learning capability, step 
sequences were applied to both algorithms for longer 
durations with no variation in the torque load to 
allow for training.  

Figures (5) and (6) show the response of the two 
algorithms after 20 seconds of training. It can be 
noted that the enhanced algorithm has better learning 
and transient performance than the conventional one 
(see error curves). Table (2) shows a comparison of  
different control algorithms to the performance of 
the system using some performance measurement 
factors. The performance factors that used in this 
work are the integral absolute error (IAE), the 
integral square error (ISE), the integral multiple time 
absolute error (ITAE). 
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Figure (1) step response (conventional auto-attentive 

approach with large input scaling factors. 
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 Figure (2) step response (enhanced auto-attentive 
approach with large input scaling factors) 
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Figure (3) Control system response using auto-
attentive approach with experience model  
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Figure (4) Control system response using enhanced 

auto-attentive approach with experience model 
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Figure (5) Control system response after 20 sec of 

training using conventional auto-attentive approach 
with experience model 
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Figure (6) Control system response after 20 sec of 

training using enhanced auto-attentive approach with 
experience model  

 
Algorithms IAE*e+3 ISE*e+3 ITAE*e+3 

Auto-
Attentive 
approach 

14 11392 148 

Enhanced 
auto-attentive 

approach 

14 10082  141 

Auto-
attentive 

approach with 
experience 
model after 

training 

0.0701 2.4891 0.7252 

Enhanced 
Auto-attentive 
approach with 

experience 
model after 

training 

0.0636 1.5559 0.6202 

 

Table (2) Performance comparison of different 
control algorithms (simulation results) 
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