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Abstract: - This paper presents solution of optimal power flow (OPF) problem of medium-sized power systems via a
genetic algorithm of real type. The objective is to minimize the total fuel cost of generation and environmental
pollution caused by fossil based thermal generating units and also maintain an acceptable system performance in
terms of limits on generator real and reactive power outputs, bus voltages, shunt capacitors/reactors, transformers tap-
setting and power flow of transmission lines. CPU times can be reduced by decomposing the optimization constraints
of the power system to active constraints manipulated directly by the genetic algorithm, and passive constraints
maintained in their soft limits using a conventional constraint load flow. Simulation results on the IEEE 30-bus
network with 6 generators show that by this method, an optimum solution can be given quickly. Further analyses
indicate that this method is effective for medium-scale power systems.
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1   Introduction
The optimal power flow calculation optimizes the static
operating condition of a power generation-transmission
system. The main benefits of optimal power flow are (i)
to ensure static security of quality of service by imposing
limits on generation-transmission system’s operation, (ii)
to optimize reactive-power/voltage shedeluling and (iii)
to improve economy of operation through the full
utilization of the system’s feasible operating range and
by the accurate coordination of transmission losses in
scheduling process.  The OPF has been usually
considered as the minimisation of an objective function
representing the generation cost and/or the transmission
loss. The constraints involved are the physical laws
governing the power generation-transmission systems
and the operating limitations of the equipment.
     The optimal power flow has been frequently solved
using classical optimisation methods. Effective optimal
power flow is limited by (i) the high dimensionality of
power systems and (ii) the incomplete domain dependent
knowledge of power system engineers.
     The first limitation is addressed by numerical
optimisation procedures based on successive
linearization using the first and the second derivatives of
objective functions and their constraints as the search
directions or by linear programming solutions to
imprecise models [1-4]. The advantages of such methods
are in their mathematical underpinnings, but
disadvantages exist also in the sensitivity to problem
formulation, algorithm selection and usually converge to
local minima [5].

     The second limitation, incomplete domain
knowledge, precludes also the reliable use of expert
systems where rule completeness is not possible.
     As modern electrical power systems become more
complex, planning, operation and control of such
systems using conventional methods face increasing
difficulties. Intelligent systems have been developed and
applied for solving problems in such complex power
systems.
     In recent years, environmental constraint started to be
considered as part of electric system planning. That is,
minimization of pollution emission (NOx, SOx, CO2,
etc.) in case of thermal generation power plants.
However, it became necessary for power utilities to
count this constraint as one of the main objectives,
which should be solved together with the cost problem.
Thus, we are facing with a multi-objective problem to
deal with.
     Reference [6] solves the economic load dispatch
under environmental restrictions in a multi-hour time
horizon minimizing fuel consumption cost for SO2 and
NOx using an emission ton limit for the first one and an
emission rate for the second one.
     Reference [7] solves a cost minimization problem
proposing a solution via quadratic programming, where
environmental restrictions are modeled with lineal
inequalities.
     In a previous article [8], the authors have proposed
the use of GA in binary code on the optimal power flow
problem using as objective function the minimization of
only fuel cost in its quadratic form. This paper describes



the solution of the optimal power flow problem with
objective function on the fuel cost and NOx emission
control. The second part of the objective function is
modeled as the sum of quadratic and exponential
functions of generator active power output [9]. Because
the total objective function is very non-linear, a genetic
algorithm with real coding of control parameters is
chosen in this work in order to well taking into account
this nonlinearity and to converge rapidly to the global
optimum.
     To accelerate the processes of the optimisation, the
controllable variables are decomposed to active
constraints and passive constraints. The active
constraints which influence directly the cost function are
included in the (GA or EP) process. The passive
constraints which affect indirectly this function are
maintained in their soft limits using a conventional
constraint load flow, only, one time after the
convergence of GA or EP. The search of the optimal
parameters set is performed taking into the account that
the power losses are 2% of the power demand. The slack
bus parameter will be recalculated in the load flow
process to take the effect of the passive constraints and
the exact power losses.
     The algorithm was developed in an Object Oriented
fashion, in the C++ programming language. This option
was made given the high flexibility and ease of
reconfiguration given by this approach [10].

2   Problem formulation
The standard OPF problem can be written in the
following form,
Minimise F(x) (the objective function)

subject to : h(x) = 0     (equality constraints)
and g(x)≤ 0   (inequality constraints)
where x is the vector of the control variables, that is
those which can be varied by a control center operator
(generated active and reactive powers, generation bus
voltage magnitudes, transformers taps etc.);
The essence of the optimal power flow problem resides
in reducing the objective function and simultaneously
satisfying the load flow equations (equality constraints)
without violating the inequality constraints

2.1   Objective Function
2.1.1   Economic objective function
The most commonly used objective in the OPF problem
formulation is the minimisation of the total operation
cost of the fuel consumed for producing electric power
within a schedule time interval (one hour). The
individual costs of each generating unit are assumed to
be function, only, of active power generation and are
represented by quadratic curves of second order. The
objective function for the entire power system can then

be expressed as the sum of the quadratic cost model at
each generator.
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where ng is the number of thermal units including the
generator at the slack bus, Pgi is the generated active
power at bus i and ai, bi and ci are the unit costs curve for
ith generator.

2.1.2 Emission objective function
In a power generating system containing fossilfuel units,
the total emission can be reduced by minimizing the
three major pollutants  oxides of nitrogen (NOx), oxides
of sulfur (SOx) and carbon dioxide (CO2). The objective
function that minimizes the total emissions can be
expressed in a linear equation [11] as the sum of all the
three pollutants (in tons/MWh) resulting from generation
Pgi of the ith generator.
     In this study, Nitrogen-Oxid (NOx) emission is taken
as the index from the viewpoint of environment
conservation. The amount of NOx emission is given as a
function of generator output (in Ton/hr), that is, the sum
of quadratic and exponential functions [12] of generator
active power output as
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where ai, bi,ci, di, and ei are the pollution coefficients of
the ith generating unit.
     The pollution control can be obtained by assigning a
cost factor to the pollution level expressed as
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where, FECC is the emission control cost factor in $/Ton
which was taken as 550.66 $/Ton [13].

2.1.3   Total objective function
The total objective function considers at the same time
the cost of the generation and the cost of pollution level
control. Theses objectives have complicated natures and
are conflicted in some points (the minimization of the
generation cost can maximizes the emission cost and
vice versa); therefore a compromised technique is
required. Consequently, the total cost (in $/hr) is
expressed as [14]

( ) GCPC FFF ⋅−+⋅= αα 1  (4)
where α is a compromise factor varied in the range

10 ≤≤α . The boundary values α=1 and α=0 give the
conditions for the pure minimization of the fuel cost
function and the pure minimization of the pollution
control level.



2.2   Types of equality constraints
While minimizing the objective function, it is necessary
to make sure that the generation still supplies the load
demands plus losses in transmission lines. Usually the
power flow equations are used as equality constraints.
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where active and reactive power injection at bus i are
defined in the following equation:
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2.3   Types of inequality constraints
The inequality constraints of the OPF reflect the limits
on physical devices in the power system as well as the
limits created to ensure system security. The most usual
types of inequality constraints are upper bus voltage
limits at generations and load buses, lower bus voltage
limits at load buses, var. limits at generation buses,
maximum active power limits corresponding to lower
limits at some generators, maximum line loading limits
and limits on tap setting of TCULs and phase shifter.
     The inequality constraints on the problem variables
considered include:
• Upper and lower bounds on the active generations at
generator buses Pgi

min≤ Pgi ≤ Pgi
max , i = 1, ng.

• Upper and lower bounds on the reactive power
generations at generator buses and reactive power
injection at buses with VAR compensation Qgi

min≤ Qgi≤
Qgi

max , i = 1, npv
• Upper and lower bounds on the voltage magnitude at
the all buses . Vi

min≤ Vi ≤ Vi
max , i = 1, nbus.

• Upper and lower bounds on the bus voltage phase
angles θi

min≤ θi ≤ θi
max , i = 1, nbus.

• Upper and lower bounds on the bus voltage phase
angles θi

min≤ θi ≤ θi
max , i = 1, nbus.

• Upper and lower bounds on branch MW/MVAR/MVA
flows
     It can be seen that the generalised objective function
F is a non-linear, the number of the equality and
inequality constraints increase with the size of the power
distribution systems. Applications of a conventional
optimisation technique such as the gradient-based
algorithms to a large power distribution system with a
very non-linear objective functions and great number of
constraints are not good enough to solve this problem.
Because it depend on the existence of the first and the
second derivatives of the objective function and on the
well computing of these derivative in large search space.

3   Evolutionary Algorithms in Economic
Power Dispatch
     Evolutionary algorithms (EAs) are computer-based
problem solving systems which are computational
models of evolutionary processes as key elements in
their design and implementation. Genetic algorithm is
the most popular and widely used of all evolutionary
algorithms. It transforms a set (population) of individual
mathematical objects (usually fixed length character or
binary strings), each with an associated fitness value,
into a new population (next generation) using genetic
operations similar to the corresponding operations of
genetics in nature. GAs seem to perform a global search
on the solution space of a given problem domain [15-
18].
     There are three major advantages of using genetic
algorithms for optimization problems.

 GAs do not involve many mathematical
assumptions about the problems to be solved. Due to
their evolutionary nature, genetic algorithms will search
for solutions without regard for the specific inner
structure of the problem. GAs can handle any kind of
objective functions and any kind of constraints, linear
or nonlinear, defined on discrete, continuous, or mixed
search spaces.
 The ergodicity of evolution operators makes

GAs effective at performing global search. The
traditional approaches perform local search by a
convergent stepwise procedure, which compares the
values of nearby points and moves to the relative
optimal points. Global optima can be found only if the
problem possesses certain convexity properties that
essentially guarantee that any local optimum is a global
optimum.
 GAs provide a great flexibility to hybridise with

domain-dependent heuristics to make an efficient
implementation for a specific problem.

     Usually there are only two main components of most
genetic algorithms that are problem dependent: the
problem encoding and the evaluation function.
     The problem to be solved by a genetic algorithm is
encoded as two distinct parts: the genotype called the
chromosome and the phenotype called the fitness
function. In computing terms the fitness function is a
subroutine representing the given problem or the
problem domain knowledge while the chromosome
refers to the parameters of this fitness function. Most
users of genetic algorithms typically are concerned with
problems that are nonlinear.
     The traditional binary representation used for the
genetic algorithms creates some difficulties for the
optimisation problems of large size with high numeric
precision. According to the problem, the resolution of
the algorithm can be expensive in time. The crossover
and the mutation can be not adapted. For such problems,
the genetic algorithms based on binary representations
have poor performance. The first assumption that is



typically made is that the variables representing
parameters can be represented by bit strings. This means
that the variables are discretized in an a priori fashion,
and that the range of the discretization corresponds to
some power of 2. For example, with 10 bits per
parameter, we obtain a range with 1024 discrete values.
If the parameters are actually continuous then this
discretization is not a particular problem. This assumes,
of course, that the discretization provides enough
resolution to make it possible to adjust the output with
the desired level of precision. It also assumes that the
discretization is in some sense representative of the
underlying function.
     Therefore one can say that a more natural
representation of the problem offers more efficient
solutions. Then one of the greater improvements consists
in the use of real numbers directly. Evolutionary
Programming algorithms in Economic Power Dispatch
provide an edge over common GA mainly because they
do not require any special coding of individuals. In this
case , since the desired outcome is the operating point of
each of the dispatched generators (a real number), each
of the individuals can be directly presented as a set of
real numbers, each one being the produced power of the
generator it concerns.
     Our Evolutionary programming is based on the
completed Genocop III system [19], developed by
Michalewicz, Z. and Nazhiyath, G. Genecop III for
constrained numerical optimization (nonlinear
constraints) is based on repair algorithms. Genocop III
incorporates the original Genocop system [20] (which
handles linear constraints only), but also extends it by
maintaining two separate populations, where a
development in one population influences evaluations of
individuals in the other population. The first population
Ps consists of so-called search points which satisfy linear
constraints of the problem; the feasibility (in the sense of
linear constraints) of these points is maintained by
specialized operators (as in Genocop). The second
population, Pr, consists of fully feasible reference points.
These reference points, being feasible, are evaluated
directly by the objective function, whereas search points
are “repaired”' for evaluation.

3.1 The Original GENECOP System
The Genecop (for GEnetic algorithm for Numerical
Optimization of Constrained Problem) system [20]
assumes linear constraints only and a feasible starting
point (a feasible population).

3.1.1   Initialisation
Let [ ]k

ng
k
i

kk PgPgPgPg ,,,1 LL=  be the trial
vector that presents the kth individual, k=1,2,…,P, of the
population to be evolved, where I is the population size.

The elements of the Pgi are the desired values of the
power outputs of generators. The initial parent trial
vectors Pgk, k=1,…,P, are generated randomly from a
reasonable range in each dimension by setting the
elements of Pgk as

),( max,min, ii
k
i PgPgUPg =  for i=1,2,…,ng, (7)

where U(Pgi,min , Pgi,max) denotes the outcome of a
uniformly distributed random variable ranging over the
given lower bounded value and upper bounded values of
the active power outputs of generators.
     A closed set of operators maintains feasibility of
solutions. For example, when a particular component xi
of a solution vector X is mutated, the system determines
its current domain dom(xi) ( which is a function of liner
constraints and remaining value of the solution vector X)
and the new value xi is taken from this domain (either
with flat probability distribution for uniform mutation, or
other probability distributions for non-uniform and
boundary mutations). In any case the offspring solution
vector is always feasible. Similarly, arithmetic crossover,
aX+(1-a)Y, of two feasible solution vectors X and Y
yields always a feasible solution (for 0<=a<=1) in
convex search spaces.

3.1.2   Offspring Creation
By adding a Gaussian random variation with zero mean,
a standard derivation with zero mean and a standard
derivation proportional to the fitness value of  the parent
trial solution, each parent Pgk, k=1,…,P, creates an
offspring vector, Pgk+1 , that is,

( ),,0 2
k
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where ( )2,0 kN σ  designates a vector of Gaussian random
variables with mean zero and standard deviation σk,
which is given according to
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where F is the objective function value to be minimized
in (2) associated with the control vector; Fmin represents
the minimum objective function value among the trial
solution; r is a scaling factor; and M indicates an offset.

3.1.3   Stopping Rule
As the stopping rule of maximum generation or the
minimum criterion of F value in Equation (1) is satisfied,
the evolution process stops, and the solution with the
highest fitness value is regarded as the best control
vector.

3.2 Replacement of individuals by their repaired
versions
The question of replacing repaired individuals is related
to so-called Lamarckian evolution, which assumes that



an individual improves during its lifetime and that the
resulting improvements are coded back into the
chromosome. In continuous domains, Michalewicz, Z.
and Nazhiyath, G. indicated that an evolutionary
computation technique with a repair algorithm provides
the best results when 20% of repaired individuals replace
their infeasible originals.

4   Application Study
The OPF using Evolutionary Algorithm (EA) has been
developed by the use of Borland C++ Builder version 5 .
More than 6 small-sized test cases were used to
demonstrate the performance of the proposed algorithm.
Consistently acceptable results were observed. The IEEE
30-bus system with 6 generators is presented here. The
total load was 283.4 MW. We propose to apply a genetic
algorithm of real type to present active powers of the 6
generators directly. The parameters of the developed EA
are: the number of maximal iteration is 5000, the size of
population is 70, the crossover used is of heuristic type,
the mutation of “non-uniform” type, the operator of
selection remains identical as the one of the roulette
wheel, the probability of replacement is 0.25 and the
power mismatch tolerance is 0.0001 p.u.
     Upper and lower active power generating limits and
the unit costs of all generators of the IEEE 30-bus test
system are presented in Table 1. The NOx emission
characteristics of generators are grouped in Table 2.

Table 1.  Power generation limits and cost coefficients for
IEEE 30-bus system.

Bus
Pgmin

(MW)
Pgmax

(MW)
a

($/hr)
b

($/MW.hr)
c.10-4

($/MW².hr)
01 50.00 200.00 0 2.00 037.5
02 20.00 080.00 0 1.75 175.0
05 15.00 050.00 0 1.00 625.0
08 10.00 035.00 0 3.25 083.0
11 10.00 030.00 0 3.00 250.0
13 12.00 040.00 0 3.00 250.0

Table 2. Pollution coefficients for IEEE 30-bus system

Bus a.10-2 b.10-4 c.10-6 d.10-4 e.10-2

1 4.091 -5.554 6.490 02.00 2.857
2 2.543 -6.047 5.638 05.00 3.333
5 4.258 -5.094 4.586 00.01 8.000
8 5.326 -3.550 3.380 20.00 2.000

11 4.258 -5.094 4.586 00.01 8.000
13 6.131 -5.555 5.151 10.00 6.667

Table 3. Results of minimum total cost for IEEE 30-bus
system in three cases (α=1, α=0.5 and α=0)

Variable Initial state
Generation

cost
minimum

Generation
cost +

Emission
minimum

Emission
minimum

Pg01(MW) 0099.2110 0180.8180 0128.2124 0066.6384
Pg02(MW) 0080.0000 0048.9381 0065.5900 0065.7536
Pg05(MW) 0050.0000 0018.9533 0023.7065 0049.9997
Pg08(MW) 0020.0000 0020.5136 0026.4992 0034.9999
Pg11(MW) 0020.0000 0010.3941 0024.6192 0029.9395
Pg13(MW) 0020.000° 0013.7138 0021.7388 0039.9998
Generation
cost ($/hr) 0901.9180 0803.1060 0824.9884 0943.1008

Power Loss
(MW) 0005.8120 0009.9308 0006.9661 0003.9309

Emission
(ton/h) 0000.2391 0000.3771 0000.2659 0000.2051

Total cost
($/h) 1033.6000 1010.7000 0971.4000 1056.1000

     The results including the generation cost, the
emission level and power losses are shown in Table 3.
This table gives the optimum generations for minimum
total cost in three cases: minimum generation cost
without using into account the emission level as the
objective function (α=1), an equal influence of
generation cost and pollution control in this function and
at last a total minimum emission is taken as the objective
of main concern (α=0). The active powers of the 6
generators as shown in this table are all in their
allowable limits. We can observe that the total cost of
generation and pollution control is the highest at the
minimum emission level (α=0) with the lowest real
power loss (3.931 MW). As seen by the optimal results
shown in the table 3, there is a trade-off between the fuel
cost minimum and emission level minimum. The
difference in generation cost between these two cases
(803.1060 $/hr compared to 943.1008 $/hr), in real
power loss (9.9308 MW compared to 3.9309 MW) and
in emission level (0.3771 Ton/hr compared to 0.2051
Ton/hr) clearly shows this trade-off. To decrease the
generation cost, one has to sacrifice some of
environmental constraint. The minimum total cost is at
α=0.5. The security constraints are also checked for
voltage magnitudes, angles and branch flows. The
voltage magnitudes and the angles are between their
minimum and the maximum values. No load bus
was at the lower limit of the voltage magnitude. The
branch MW/MVAR/MVA flows do not exceed
their upper and lower limits. These results are not
included in this paper.
     The figure 1 shows the best fitness found for every
generation (for α=0.5). We note a fast progress of the
value of the best fitness for every generation. The
optimum has been obtained after only 1 second for the
5000 generations tested with P4 1.5,GHz,128MO.
Ever since the iteration 2968, it converges already,
toward the optimum value of the order of 973.05 $/h.



This value does not take into account the exact cost of
the total real power losses. We proceed then to a power
flow calculation of type Newton-Raphson and readjust
slack generation that takes in consideration the exact
losses of real powers. The convergence of the method of
N-R is achieved after 4 iterations and 0.1 sec.

Figure 1 Better Fitness during the EP processes for IEEE 30-
bus system

5   Conclusion
This paper was reported the use of evolutionary
algorithm to solve optimal power flow problem with
coordination of environmental and economy objectives.
This method would be very useful for power planner
and/or operator treat not only cost but also with
environmental objective power system. As a study case,
the IEEE 30 Bus system with 6-generating units has
been selected. The simulation results show that for
medium-scale system a genetic algorithm with real code
can give a best result with reduced time. To save an
important CPU time, the constraints are to be
decomposing into active constraints and passives ones.
The active constraints are the parameters which enter
directly in the cost function and the passives constraints
are affecting the cost function indirectly. In this
approach, only the active constraints are taken to
calculate the optimal solution set using evolutionary
programming based on GENECOP III system and the
passive constraints are taken in an efficient load flow by
recalculating active power of the slack bus. The
proposed method can be useful for large scale power
system.
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