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Abstract: -This paper presents a new neuro-predictive tuning procedure for PID controllers. The tuning 
method is based on the optimization of an objective function subject to constraints over a finite prediction 
horizon in time, making use of a neural process model. The performance of this new self tuning method 
implemented as a tuner is substantiated by experiments on a level-flow pilot plant and by comparison with a 
conventional controller. 
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1 Introduction 
 Most of the industrial controllers use fixed 
parameters and linear structures for controlling 
complex nonlinear systems. These industrial 
controllers usually employ standard classical PID 
control structures. However, for nonlinear 
processes driven through the whole operating 
range, linear models and PID control become 
impractical and due to this reason, the use of a 
nonlinear process model becomes a necessity. 
 Reliable nonlinear models can be obtained 
using neural networks, which are capable of 
approximating nonlinear functions with high level 
of accuracy [1,2]. Neural networks can be also used 
to determine controller parameters, mainly due to 
their ability to learn relationships directly from the 
process data. Most of the neural network based 
control applications are using a neural network to 
model the controller and a neural identifier for the 
process model [3,4]. Unfortunately, the replacement 
of PID controllers with the neural network based 
controllers in industrial applications is quite 
expensive and that is why the companies do not 
take this option into consideration. 
 A solution accepted by the users is to develop 
schemes for on-line adaptation or self-tuning of 
industrial controllers, and several methods have 
been proposed in the last decades [5,6,7]. Different 
adaptive techniques are classified in [5] and it turns 
out that a controller with constant parameters 
obtained via an auto-tuning procedure should be 
chosen for processes with constant dynamics. 

However, if the process dynamics are varying, then 
the controller should compensate variations by 
adapting its parameters. There are two types of 
process dynamics variations: predictable and 
unpredictable. The predictable ones are typically 
caused by nonlinearities and can be handled using a 
gain schedule. The controller parameters are found 
for different operating conditions with an auto-
tuning procedure that is then used to build a 
schedule. Unpredictable variations are caused by 
non-measurable variations, which cannot be 
handled by gain scheduling, and in this case the use 
of adaptive control is necessary. 
 This paper presents a tuner for on-line tuning of 
PID controllers that employs the multi-step-ahead 
predictive properties of neural networks in the 
objective function. The gain scheduling principle is 
replaced by using a neural network capable to 
capture the variations of the predictable dynamics 
of the process. The tuning approach uses a neural 
network to model the process dynamics and to 
develop a neuro-predictor. The tuning parameters 
of the controller are obtained through the 
optimization of the prediction error over a finite 
horizon in time. The neuro-predictive tuning 
approach is implemented as a tuner for industrial 
control applications with PID controllers. The 
advantage of such a tuner is the effective on-line 
adaptation of the existing industrial controllers 
while the process is in operation and the tracking of 
different process operating regimes and variations. 
 The proposed neuro-predictive tuner was 



successfully tested on a pilot plant which models 
the cascade control of level and flow, a process that 
is often employed in industrial applications. The 
experimental results obtained for the pilot plant are 
also given. 
 
 
2 Neuro-Predictive Tuner 
 The proposed neuro-predictive tuner is based 
on two parallel control structures, Fig. 1, working 
synchronized with the predictable dynamics process 
controlled by a PID controller. The first parallel 
control structure, which simulates the real-time 
control loop and uses the same sample period T, is 
composed of a neural network that models the 
process and a PID controller identical with the one 
from the real-time control structure 
 The second parallel control structure is a 
predictive control loop consisting of a neural 
predictor and a PID controller with adaptive tuning 
parameters. The predictive structure, with the 
sampling rate Tp, works faster than the real time 
control loop to supply the predicted control error 
over a finite time horizon. The tuning parameters 
are calculated at each sample time instant via the 
optimisation procedure and the values obtained are 
also used to update the tuning parameters of the 
other two control structures. Thus, the controller 
parameters are adapted based on predictive 
optimization of the control system behavior and the 
desired performances can be achieved over the 
entire operating range. 
 
 
2.1 Simulated control loop 
 Within the simulated control loop, the neural 
network that models the real process with 
predictable dynamic variations represents the plant.  

The use of neural networks for nonlinear 
process modeling and identification is justified by 

their capacity to approximate the non-linear 
systems. 
 One of the most general non-linear models, 
which includes the largest class of non-linear 
processes, is the NARMAX model [8,9]: 

( ) [ ( 1),.., ( ), ( ),.., ( )]y k f y k y k n u k d u k d m= − − − − −  (1) 

where f(.) is some nonlinear function, d is the dead 
time, n and m are the orders of the nonlinear system 
model, u and y being the input and the output of the 
process. A neural network based model, i.e. 
NNARMAX, corresponding to the NARMAX 
model, can be obtained by adjusting the weights of 
a multi-layer perceptron (MLP) architecture with 
adequately delayed inputs. The neural network 
output is given by: 
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where f N denotes the input-output transfer function 
of the neural network which replaces the non-linear 
function f in (1) and u(k-d-1) and y(k-1) are: 
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 For a neural network with one hidden layer, the 
following expression is obtained for equation (2): 
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where h is the number of neurons in the hidden 
layer, jσ  is the activation function for the j-th 

neuron from the hidden layer, u
jw  the weight 

vector for the j-th neuron with respect to the inputs 
stored in u(k-d-1), y

jw  the weight vector 

 

 
 

Fig. 1 Control structure with neuro-predictive tuner 
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for the j-th neuron with respect to the inputs stored 
in y(k-1), bj the bias for the j-th neuron from the 
hidden layer, wj  the weight for the output layer 
corresponding to the j-th neuron from the hidden 
layer and b the bias for the output layer. Such 
structures with a single hidden layer are considered 
satisfactory for most of the cases. 
 Since all industrial processes are working in 
closed loop, in order to obtain the neural model of 
the process, it was considered appropriate to 
perform closed loop identification. In order to result 
a most accurate model for the process nonlinear 
dynamics, the training data had to be obtained 
around different operating points such that the 
entire variation range of the process output is 
covered. For this reason a stepwise reference for the 
system was chosen summed with a pseudo random 
binary signal that was generated with a shifting 
register [10]. 
 
 
2.2 Predictive control loop 
 In order to obtain the variations of the 
predictable dynamics at the time instants k, a neural 
predictor based on the neural model of the process 
was used. A sequential algorithm that uses the 
knowledge of current values of u and y together 
with the neural network system model gives the     
i-step ahead neural predictor: 
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where: 
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 The future control u(k-d+i-1) from (5) is 
obtained by operating the predictive control loop, at 
time instant k, faster than the real-time control loop, 
so that the predicted output y(k+i) could be 
determined in a shorter period of time, where 

21, NNi = , N1 and N2 are the prediction horizons. 
If Tp is the sampling time with which the predictive 
control loop operates, this must satisfy: 

TTNN p <<− )( 12  (7) 

 Placing the neural model of the process to 
operate in the simulated control loop, in parallel 
with the real time control loop, it is possible to 
transfer at each time instant k the state x2 of the 
neural model to the neural predictor and the state x1 

of the PID controller to the adaptive controller (Fig. 
1). Thus, at each time instant k, the predicted 
behavior of the process is obtained in the vector 
form: 

T
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 The process output ypred predicted by the neural 
predictor is used to calculate the predicted control 
error based on the controller set-point. 
 Consider the discrete form of a PID controller: 

0 1 2( ) ( 1) ( ) ( 1) ( 2)u k u k q e k q e k q e k= − + + − + −  (9) 

Substituting (9) in (5) yields predicted control error: 
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where the vector u(k-d+i-1) depends on the tuning 
parameters vector q=[q0 q1 q2]. 
 By optimizing, with respect to q, the cost-
function: 

∑
=

+=
2

1

)(
2
1 2

N

Ni
pred ikeJ  (11) 

the optimal tuning parameters qopt are obtained also 
taking into account the process predictable 
dynamics variations. For the next time instant, k+1, 
the tuning parameters qopt are transferred to the real 
time control loop and to the simulated control loop. 
 The self-tuning method has the advantage that 
it does not imply a pre-tune phase because qopt is 
known after the first sampling period. However, the 
initialization of the tuning parameters q with 
adequate values is necessary when the self-tuning 
procedure is started. 
 
 
3 Experimental results 
 The neuro-predictive tuner developed for on-
line tuning of PID controllers was tested on a level-
flow pilot plant. The schematic diagram of the pilot 
plant is presented in Fig. 2.  
 The level is controlled using a cascade control 
structure that has as internal variable the feed water 
flow. The inner loop controls the feed water flow 
and rejects the disturbances caused by the pressure 
variations in the water pipe. 
 The outer loop PI controller determines the feed 
water flow reference signal r2 for the inner loop 
based on the measured water level signal. 
 The tank and the inner loop represent the plant 
for the outer controller. 
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Fig. 2 Schematic diagram of the pilot plant 
 

 The mathematical model of the open tank with 
an orifice is: 

ghACq
dt
dhA di 21−=  (12) 

The tank parameters are: A=203.4 cm2, A1=2.26 
cm2, hmax=13.5 cm, Cd=0.6. 
 Due to the non-linearity described in equation 
(12), this plant represents a suitable test-bed for the 
proposed self-tuning control method. The level and 
flow controllers, together with the neuro-predictive 
tuner are implemented on an IBM PC compatible 
computer with 12 bits A/D and D/A interface. 
 

3.1 Development of the neural process model  
 A MLP neural network is configured to 
represent the NNARMAX model (2) by applying n 
delayed process output and m delayed process input 
y(t). 
 In order to estimate the parameters of the neural 
model, a training sequence was built so that the 
process output should explore its whole operating 
range. Thus, the reference r1 from Fig. 3,a was 
applied to the real time control loop and by 
monitoring the control signal u1 and the output y1, 
with a sampling rate of 1 sec, a training sequence 
with 3600 successive samples, for each variable 
was obtained. Using the collected input-output data, 
a two layer neural network was trained off-line. 
 The model parameters m, n and d were 
estimated using an ARX type of identification with 
the Matlab System Identification Toolbox. It was 
found that the process has a delay d=5 and m=2, 
n=2. So the best training results should be obtained 
with a model that has the form:  

))6(),5((),2(),1(()( −−−−= kukukykyfky N  (13) 

 Thus, the resulting neural network model of the 
process has four inputs. Based on a series of 
successive training and testing experiments it was 
determined the structure of the network that gave 
the best results, i.e. a network with 15 neurons in 
the hidden layer. 
 

Fig. 3: Neural process model validation 
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 The network parameters (weights and biases) 
were calculated such that the mean squared error 
between the desired response (the values from the 
target vector) and the network output is minimized. 
Thus, when a certain stop criterion is satisfied, the 
training algorithm gives a set of sub-optimal values 
of the weight vectors. 
 The neural network with the constant 
parameters, obtained after the training, represents 
the process neural model. Before this model is used 
in the simulated control loop and before obtaining 
the neural predictions, the validation of the neural 
model is required. Two validation tests were 
performed. Because the training sequence was 
obtained by a closed loop identification method, the 
first validation test consisted in applying the same 
reference used in identification to the simulated 
control loop and to the real time control loop. The 
experimental results are depicted in Fig. 3(a). The 
second validation test was similar with the first, but 
the reference was changed, as is shown in Fig. 3(b). 
These tests used the following error index to 
appreciate the quality of the model: 
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 The best results were obtained while training 
the network for the whole data set, 300 epochs and 
a mean squared error of 510− . 

 In order to obtain the on-line validation of the 
neural model, a Matlab/Simulink scheme was 
implemented, which makes use of the Real Time 
Windows Target kernel. This allows the closed 
loop operation of the real and neural closed loop 
systems using the same PI controller. 
 The software instruments presented in [12] 
were used for the training and the validation of the 
neural network that models the process. 
 
 
3.2 Adaptive procedure results 
 The parameters q0 and q1 of the PI controller 
were obtained by optimizing an objective function 
via a numerical procedure. The cost function 
implements the mean squared prediction error over 
a finite prediction horizon as given in (11). A 
neural model was used to predict the future outputs 
in order to obtain a reliable nonlinear model of the 
process. In order to avoid the saturation of the 
actuator, the optimization was carried out 
considering constraints for the control input and for 
the controller parameters. 
 For a fair comparison with the existing control 
structures, the PI level controller was first tuned 
using the relay method of Astrom and Hagglund 
[7]. Fig. 4 shows the resulting closed loop stepwise 
responses obtained with the simulated control loop 
for fixed tuning parameters of the PI controller and 
with continuous adaptation of the tuning parameters 
based of the proposed self-tuning method. 
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Fig. 4: Comparative results and parameters for the adaptive discrete PI controller 



 The control inputs for the two loops and the 
tuning parameters of the PI controller are also 
depicted in Fig. 4. As seen in the figure, the fixed 
parameters controller gave a sluggish control 
response. With the tuner, the controller had 
continuous adaptation of the tuning parameters 
resulting in a much faster control.  
 
 
4 Conclusions 
 A tuner for PID controllers based on a neuro-
predictive control approach has been derived. The 
advantage of the method consists in the on-line 
adaptation of the controller parameters and in 
tracking different process operating regimes. 
 The proposed neuro-predictive tuner was 
successfully tested on a pilot plant, which models 
the cascade control of level and flow, a process that 
is often employed in industrial applications. A 
comparison with the existing control structures was 
also given. 
 The neuro-predictive approach for tuning 
controllers can also be used for more sophisticated 
control algorithms than the PID. Optimal tuning 
parameters of such controllers, with many more 
parameters, can be obtained by minimizing an 
objective function based on the mean squared 
prediction error over a prediction horizon using 
numerical procedures. 
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