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Abstract: - This paper shows a comparison between two clustering algorithms that use divergence measures to 
aid the clustering task. Both algorithms take a N-dimensional data set and uses competitive neural networks to 
separate them into isotropic clusters. Those clusters are then grouped based on a divergence measure. In this 
paper we compare that procedure using two different divergence measures, the Mahalanobis distance and the 
Kullback-Leibler divergence. The paper shows some results of clustering on both algorithms and make a few 
comments about the choice of the free parameters in both situations. 
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1   Introduction 
The clustering technique is widely used in many 
areas such as data mining, image segmentation, 
pattern recognition, statistical data analysis and 
others. In those areas, the clustering is an important 
task that is part of the whole process. The main 
objective of a good clustering algorithm is to 
separate classes (or clusters) distributed arbitrarily in 
the data space of the data set, in a non-supervised 
way. In this paper we compare two algorithms used 
for clustering. Both are based on a new approach 
first proposed in [1]. Some others techniques to 
archive this task have been developed and are based 
on several heuristics. The most simple way of 
clustering or classification is the use of vector 
quantization techniques like k-means[2] or pure 
competitive neural networks[3] to find centers that 
represents the regions, segmenting the data set into 
isotropic clusters. The similarity measure used in 
most of these techniques is the Euclidian distance 
between the point and the center of its class. More 
elaborate techniques, using Kohonen(SOM) maps[4] 
or Fuzzy k-means[5] have been developed. In the 
SOM algorithm, the centers that represent the 
classes have a topologic organization (each center 
have neighbors) organized in to a MAP. The Fuzzy 
k-means technique uses the concept of pertinence 
function of the point to each center. That pertinence 
indicates how strong that center belongs to a center, 
it goes from 0 (don't belongs) to 1 (belongs). Some 
modifications of the usual SOM algorithm based in 
the segmentation of the output map was also been 

developed[6][7] and give good results, but need 
complex computation tasks. In that technique, the 
output map in the SOM algorithm is used to 
compute the distance (in fact the Euclidian distance) 
from each center to their neighbors, forming a 
distance matrix that is segmented (using image 
processing techniques).  In most used techniques, 
the number of classes that exists in the data set must 
be given a priori. In some cases this information is 
not available, so it's important to develop algorithms 
that perform the automatic classification without this 
information. Another problem in clustering 
techniques is the complexity of the spatial 
distribution of the data set. The two approaches 
compared here uses a simple competitive neural 
network and a linking (or grouping) heuristic. That 
heuristic group similar clusters using a divergence 
measure as metric of dissimilarity between them. 
One of the algorithms uses the Kullback-Leibler 
divergence[3] and the other uses the Mahalanobis 
distance[8]. Both measures incorporate the spatial 
statistics of the data, giving us a good measure of the 
distribution of the points, making possible the 
algorithm to be used to classify very complex data 
sets. The only two a priori information about the 
data set given to the algorithm is the number of 
auxiliary centers and a threshold dissimilarity. 

The main advantage of the methods compared 
here and the others clustering methods is that in 
most methods (we can say, k-means, competitive 
neural networks, SOM-Maps and SOM-Map based 
methods, and others), we must inform a priori the 
number of classes present in the data set. Another 



advantage is the computational cost. In some 
methods like showed in [6] and [7], the 
computational cost is high, because they use 
complex tools for segmenting the output map in the 
Kohonen algorithm. The algorithms compared here 
use a simple competitive neural network to initially 
cluster the data and make comparisons between 
measures in the initial clusters. That has a low 
computational cost and after the clustering, the 
classification of new input data is made just 
measuring the probability to each cluster as in a 
Bayes classifier[12]. 

The paper is organized as follows; in the 
section 2 we will describe the approach used in the 
algorithms; in the section 3 we will describe the 
Kullback-Leibler and the Mahalanobis distance. The 
section 4 shows some clustering results using both 
approaches and in the section 5 we present some 
conclusions and comments about the comparison. 
 
2 Clustering Approach 
The algorithms compared here uses the approach 
described in[1] and [9]. In that approach, the entire 
data set is segmented into small isotropic clusters 
using some vector quantization technique. After 
that, the small clusters (called here regions) are 
grouped based on a measure of divergence between 
them. The divergency is measure to each pair of 
small clusters and they are grouped or not based on 
a threshold value of that divergence. The vector 
quantization technique used in this work was pure 
competitive neural networks. The figure 1 shows a 
data set after quantization. 
 

 
 

Fig 1: Quantized data set. 
 
As we can see, the points in the data set are 
quantized to one among several centers, grouping 
the points in small regions. The number of centers is 
chosen arbitrarily. In this clustering technique the 
result depends on the choice of number of centers, 
but as we can see in the results, its robust and we 
obtain the same result to a wide rang of values. 
 

3 Divergence Metrics 
To make a decision whether goup or not group two 
regions, we must use some criteria. In [1] that 
criteria is based on a threshold in a measure of the 
Mahalanobis distance between two centers of two 
regions. In this section, we will explain how to use 
the Mahalanobis distance and the Kullback-Leibler 
divergence to measure the divergence between the 
regions. 
  
2.1 Mahalanobis distance 
The Mahalanobis metrics is a similarity measure that 
consider the spatial statistics of the points where the 
measure is been made[10]. The distance between 
two points 1p  and 2p  inside a space where the 
covariance matrix of the distribution of the 
probability that represents the spatial statistics is C , 
is given by:  
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The figure 2 shows the effect of the spatial 
probability in the distance of two points. In that 
figure, even the distance 1d  looks greater (in terms 
of Euclidian distance) it is smaller than the distance 

2d . That difference exists because the covariance 
matrix of the spatial distribution gives a greater 
weight to the distances that doesn't been in the 
direction of the distribution. 
 

 
 

Fig. 2: Distance measurement in a space with non-
uniform probability distribution 

 
The Mahalanobis distance is important in 
classification problems because the information 
about spatial distribution of the points if 
incorporated in the metrics. The spatial distribution 
can be represented by the statistics of the data set 
where we wish to measure, in some way, the 
distance between two points. We can consider the 
Euclidian distance, a special case of the 
Mahalanobis distance, where the data would be 
uniformly distributed. That case corresponds a 
distribution where the covariance matrix is a 



diagonal matrix. In that sense, the Mahalanobis 
metrics become a general case of distance 
measurements and suitable to be used in 
classification problems. In this work, we measure 
the divergence between two clusters, by the 
Mahalanobis distance to their centers considering C  
as the covariance matrix of the a region formed by 
the points that belong to both clusters. This approach 
leads to values that are as low as the clusters are 
"aligned" or in other words, have same statistics. 
 
2.1 Kullback-Leibler divergence 
The dissimilarity between two clusters is a number 
that measure how distinct they are. The greater the 
number, more distinct the clusters are. There are 
several ways to measure dissimilarity between two 
clusters[8]. The most common is the distance of 
their centers. This measure is good when we have 
isotropic clusters where we have points equally 
distributed in all directions. In most clustering cases, 
we have non-isotropic clusters that makes the 
Euclidian distance not good to measure 
dissimilarity. To measure the dissimilarity between 
clusters in a clustering algorithm the aim is to detect 
the separation between them. In the figure 3 we can 
see two situations, where clusters are separated and 
where are not. 
 

 
 

Fig. 3: Regions in two different situations 
 
As we can see, the Euclidian distance between both 
situations are almost the same, but we have in one 
case a similar cluster and a dissimilar cluster in the 
other. One solution to better measure the 
dissimilarity was given in [1]. In that paper the 
authors uses the Mahalanobis distance as 
dissimilarity distance. In this paper we present 
another dissimilarity measure to use with a cluster 
algorithm, the Kullback-Leibler divergence. The 
Kullback-Leibler is a measure based on the relative 
entropy of two probability density functions[3][11]. 
The Kullback-Leibler divergence between two 
probabilities density p  and q  for a given random 
variable X  is given by 
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This divergence measures how different they are on 
representing the data X . We can use that property 
to measure if two clusters are similar or not in a 
statistical point of view. That will be explained in 
the next sections. 

The estimative of )(xp  and )(xq  can be 
calculated by any method, in this paper we use 
Parzen windows[12] to obtain )(xp  and )(xq . The 
equation (3) shows how to estimate a probability 
density function from a given set of data. 
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where )(xϕ  is the window function and n is the 
number of points. nV  and nh are the volume and 
edge length of a hypercube where the function will 
be evaluated. 
 
3   Clustering results 
The algorithm with both metrics was tested in a 
three-dimensional data set (showed in figure 4). 
Both algorithms archive the correct clustering, each 
one with an appropriate threshold. The figure 5 
shows the result of clustering and the parameters 
used to archive that clustering.  
 

 
 

Fig. 4: Original data set used to test the algorithms 
(two springs interlaced) 

 

 
Fig. 5: Classified rings data set. For Mahalanobis 
metrics we get 65=td  and for Kullback-Leibler 
divergence we get 15−=td . Both use 80 auxiliares 
centers (initial regions). 
 



The figures 6 and 7 shows the results in terms of 
number of classes found as function of threshold 
distance td  to both approaches. As we can see, 
using the Mahalanobis distance we have a wide 
range of threshold values that gives the same 
number of classes (2 classes in that case). That 
number is exactly the number of classes present in 
the data set. That makes possible the correct choice 
of the threshold distance by analyzing the results. 
With that procedure, we can make the choice of the 
threshold distance an automatic task. 

With the kullback-leibler divergence, we can't  
use the results to help the choice of the threshold 
because the range of values of threshold that give 
the correct number of classes (2 in that case) is not 
significant. 

 

 
 

Fig. 6: Results of number of classes  versus 
threshold distance using Mahalanobis distance. 

 

 
 

Fig. 7: Results of number of classes  versus 
threshold distance using Kullback-Leibler 

divergence 
 

In order to test the robustness of the algorithms 
we have tested it with different number of initial 
regions in the vector quantization stage. The figures 
8 and 9 shows the results (also in terms of number of 
classes) as function of number of number of initial 
regions. The figures shows that, for larges number 
of initial regions, we have a stable situation in both 
cases. Because of that result, we can conclude that 
the choice of number of initial regions is robust for 
larges numbers of initial regions. Of course, if the 
number is made too much large the effect of local 
statistics is lost and the algorithm fails. To know 
how large that number can be, we can look for 
results like showed in the figures 8 and 9. 
 

 
 
Fig 8: Results of number of classes versus number  
of initial regions using Mahalanobis distance. 
 

 
 
Fig 9: Results of number of classes versus number 
of initial regions using Kullback-Laibler divergence. 
 
4   Conclusion 
We have compared the use of Kullback-Leibler 
divergence and Mahalanobis distance in clustering 
task. The results showed that both metrics are 
capable to archive the correct clustering using the 
correct threshold and number of initial centers.  

The approach used still depends on the correct 
choice of the threshold td  but, as we could see in 
the results, the choice of threshold distance and the 
number of initial regions can be assisted, even 
automated, with the analysis of the behavior of 
number of classes as function of threshold and 
number of initial regions. To do that analysis the 
Mahalanobis distance have showed more 
appropriate, as we could see in the results of figures 
6 to 9. 

We have made tests with others data sets with 
different dimensions and configurations and the 
results were analogs. In most cases the Mahalanobis 
distance help to find the threshold distance and the 
number of initial regions more easily than using 
Kullback-Leubler divergence. In some cases the 
Kullback-Leibler was better that Mahalanobis 
distance, and we conclude that in a way or another 
the task of choosing the threshold and the number of 
initial regions can be aided or automated. 
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