
A new approach in Mechanical Design: a preliminary proposal. 
Theoretical derivations and potential applications 

 
ALBERTO BORBONI1, HORIA NICOLAI TEODORESCU2 

1Mechanical Engineering Department 
Brescia University 

Via Branze 38, 25123 Brescia 
ITALY 

2 Faculty of Electronics and Communications  
Technical University of Iasi 
Copou/Carol I 11, 6600 Iasi 

ROMANIA 

 
 

Abstract: - In this paper, we propose a new approach in mechanical engineering. This approach is based on conceptual 
mechanics and we propose a method to modelize and solve problems involving machine analysis and design. This approach 
would try to be used as a conceptual analysis system or as help for the designer during his decision-making. 
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1   Introduction 
The problems of applied mechanical engineering often 
involve knowledge and approaches that are difficult to 
describe in the framework of the usual modeling 
instruments of classical mechanics [12]. A difficult task is 
to define an easy method to study complex problems, like 
selection of the components during the design stage, 
feasibility of a machine project, etc. We can consider, as an 
example, the realization process of a machine. During the 
designing stage, the designer should understand the needs of 
his “client” and should project a new machine. The first 
problem is deciding the most suitable technology to gain the 
desired functionalities, with the desired performances. Just 
during the designing stage, the designer tries to compare 
many machine models in his mind and his concept of the 
“right machine” is always transforming during the 
designing activity. The first aim of our research is to answer 
the question: how describing this transformation process 
with mathematical formulations to construct a new 
instrument to help the designer? This new instrument is a 
theory involving mechanics, concepts and transformations 
of concepts [14]. The second, and perhaps more reachable 
goal, refers to the differences between the designed machine 
and the manufactured machine. As a matter of fact, during 
the manufacturing stage some uncertainties intervene: tools 
precision, unconsidered physical phenomena, the human 
factor, etc. So, the realized machine and the designed 
machine exhibit different behaviors [7]. The reader should 
also observe that the designed machine exists only in a 
virtual space: “the space of the designs” while the realized 
machine exists only in “the real space”. To compare these 
two machines, we should construct a transformation from a 
space (designs) to another space (real) able to transform a 
designed machine into a real machine. This transformation 

should be able to modelize the uncertainty of the 
manufacturing activity, so should be an instruments for the 
designer to forecast the behavior of the realized machine or 
to make the correct decision during his activity. Notice that 
the behavior of the real machine, when this forecasting 
instrument is not used, can be known only through 
measurements. Different measuring systems can give 
different results, so there differences between the “realized 
machine” and the “measured machine”. These differences 
can be forecasted by another transformation from the “space 
of measurements” to the “real space”. This new instrument 
should be a help for the designer to consider the 
measurement imprecision during his evaluation of the 
machine performances. 
All these aspects of the design, manufacturing and 
measuring of a machine cannot be easily and rigorously 
considered only with the help of classical physics, so we are 
proposing a new approach to help a mechanical engineer 
during his work, adding new instruments to his classical 
physical and empirical knowledge. Based on the 
preliminary works [1-4, 10, 13, 15], and after a theoretic 
study [10], we propose a more detailed view. Precisely, we 
define mathematical structures, according to the developed 
theory [10] of fuzzy kinematics of particles. We propose 
some potential applications for this approach as well. 
 
 
2   Fundamental Structures 
We introduce a few theoretical concepts to create a general 
framework to deal with the problem of correspondence 
between designed, measured and actual systems.  
We will work on a space as given in (Eq. 1). 
 

( ) ( )[ ]aRVARE nn o=  (1) 



En(R) is composed by a structure An(R), as defined in Eq. 2, 
and a scalar product o  can operate. 
  

( ) ( )[ ]aRVARA nn =  (2) 
 
where A is an non-empty set and its element are called 
points, Vn(R) is an n-dimensional vectorial space on the real 
field R, while a is a function, defined in (Eq. 3) and 
satisfying the axioms in (Eq. 4). 
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The operator o  is a scalar product and it satisfies the (Eq. 
5). 
 

( ) ( ) RRVRV nn →×:o  (5) 
 
The fundamental concept of particle is introduced. X is an 
Euclidean three-dimensional space and T is an Euclidean 
one-dimensional space, P is an elementary particle: then an 
element p of the defined space  X × T can be associated to 
this particle (Eq. 6). 
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After having defined a suitable reference system for the 
space X × T, p can be identified with a set of coordinates 
like in (Eq. 7). 
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Then we can write: P occupies (x,t) or, concisely, P(x,t). 
 
 
3   Correspondence function 
Two spaces X1 × T1 and X2 × T2 are defined and they have 
the same properties of the space X × T. An elementary 
particle P is considered. Two elements, p1 and p2, are 
associated to it and they belong, respectively, to the spaces 
X1 × T1 and X2 × T2. Having defined suitable reference 
systems, we can write P occupies (x1,t1) in the space X1 × T1 
and P occupies (x2,t2) in the space X2 × T2 or, concisely, 
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One can ask which is the numerical correspondence 
between the couple of coordinates (x1,t1) and the couple of 
coordinates (x2,t2). To answer this question, the 
correspondence function f1,2 is defined in Eq. 9. 
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More generally, a succession of spaces X i × T i  is defined 
and they have the same properties of the just defined space 
X × T, the elementary particle P is considered again: a 
succession of elements pi is associated to it and they belong 
to the spaces X i × T i. Having defined suitable reference 
systems, we can write P occupies (xi,ti) in the space X i × T i 
or, concisely, 
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The respective correspondence functions are, then, defined 
by the Eq. 11. 
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The element pi can, now, be transformed in the element pj 
with the correspondence function fi,j . The function fi,j can be 
generated with a composition of the functions fi,i+1 (Eq. 11) 
or can be directly defined like in the Eq. 12. 
 

( ) ( )( ) ( )
( ) ( )( )

( ) ( )( ) ( )
Nji

txtxf
RVRV

RRRVRVf

jj
t

ji
x

jiiiji

TX

TX
ji

jj

ii

∈

=
×→

→×××

,,

,,,

:

,,,

13

3
13,

µµ

 (12) 

 
To simplify the expressions, a reference element pk, or a 
reference space X k × Tk, can be considered. Then all the 
elements pi , and all the spaces X i × Ti, are referred to it. 
The element p1 in the space X1 × T1 is chosen as reference. 
Then, we can write P occupies (x1,t1) in the space X 1 × T 1 
to which corresponds the “position” of (xi,ti) in the space X i 
× T i or, concisely, 
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4 Discrete Movement 
A succession of elements pih is considered and it is ordered 
with growing times tij (Eq. 14): it represents a discrete 
movement of P in the space X i × T i. 
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Then, we can write P moves along (xij,tij) in the space X i × 
T i or concisely, 
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The correspondence function fij between the movement 
( ){ } mhihih tx

K2,1, =  and the movement ( ){ }
mhjhjh tx

K2,1
,

=
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defined (Eq. 16). 
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If the i-movement and the j-movement are defined with a 
different number of elements pkh, the correspondence 
function fij takes the form of the Eq. 17. 
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One can observe that, if the i-movement and j-movement 
are defined in the same space and are considered two 
representations of the same movement, because they are 
defined by a different number of elements, the 
correspondence function fij can be seen as an interpolator 
from the representation with a low number of points to a 
representation with a higher number of points. In a more 
general sense, the correspondence function can be used to 
construct new representations, starting from a base 
representation. 
The second problem regards the temporal order of the 
sequence. This property can be removed to simplify our 
theory, but its practical role is useful in the computation of 
other non fundamental properties of the movement like the 
speed or the acceleration. The example in Fig. 1 can be 
considered. 
 

 
(x11, 0) (x12, 1) (x13, 2)

(x21, 0) (x22, 1.5) (x23, 1) (x24, 2)

(x21, 0) (x22, 1.5) (x23, 1) (x24, 2)

g 

r 

f

 
Fig. 1 Example of generation of an ordered movement 

 
In Fig. 1 three successions of elements pkh are considered, 
the first represents a movement in the space X 1 × T 1 , the 
second is a disordered succession of elements pkh, while the 
third represents a movement in the space X 2 × T 2 . The 
correspondence function f12 is decomposed in an 
intermediate correspondence function g and an ordering 
function r. This approach is useful when the correspondence 
between the two movement takes a temporal fuzzy, or 
statistical, form. In this situation, the presence of an 
intermediate correspondence function g can be observed. 
These hinted concepts are exactly exposed in the Eq. 18. 
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5 Continuous Movement 
The discrete movement defined in the Eq. 15 is considered. 
A continuous movement is defined from a discrete 
movement with a suitable correspondence function (Eq. 19). 
It represents nothing else than an interpolator/extrapolator, 
which generates a continuous function, from a sequence of 
elements. This operation can be performed, i. e. with a 
fuzzy function, where the independent variable is the time 
of the element pj of the codomain of cij. 
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Applying continuously the correspondence function of Eq. 
19, a continuous movement is obtained (Eq. 20). 
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We can write P moves continuously along (I(xj), I(tj)) in the 
space X j × T j or concisely P(tj)=( xj, tj). A correspondence 
function between the movement P(ti)=( xi, ti) and the 
movement P(tj)=( xj, tj) can be defined (Eq. 21). 
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At the present stage of this paper we have gained an 
interesting result: the possibility of transforming a 
continuous movement in another continuous movement 
with suitable correspondence functions. Undoubtedly, more 
generality can be achieved, but this aim will be referred to 
future extended works. The exposed theory brings useful 
results for a set of applications, which will be hinted in the 
next section. 
 
 
6 Applications 
Consider, as first example, the process to realize a cam 
system [4-5, 9]. The designer selects a cam profile and 
projects the cam with the desired profile [8]. To project the 
proper profile, the designer needs to predict the behavior of 
the cam. The designer typically uses a model with ideal 
connections between the cam and the follower, but without 
considering backlash, compliances (stiffness and friction) in 
the connections [6]. Some more expert designers are able to 
estimate backlash, stiffness and friction in the connections, 
so they can use more precise models. However, this 
estimation is always affected by errors, because the 
manufacturing activity is affected by uncertainty in tools, 
ability of the workers, errors during assembly stage, etc. To 
know the value of the imprecision, we can measure the 
performances of the realized cam system, but different 
measuring systems give different results. Therefore, another 
problem is what is the relation between measures and the 
real machine performances. More general, we face the 
described problems for every sort of machine, so the first 
proposed application consists in rigorously codifying the 
relation between the model of a mechanical system during 
the design phase, the model after the physical realization of 
the system, the measured behavior and the real behavior. 
The difference between the exposed models is intuitive, but 
a rigorous coding is not easy. This coding allows a 
representation in a single software and allows to clarify the 
relationship between the models with explicit 
correspondence functions. A machine, from a mechanical 

viewpoint, is a system able to produce mechanical work, 
that is a force and a movement. Because our theory has, for 
the present, only a kinematical nature, we will point out 
only the movement production. From a kinematical 
viewpoint, the machine behavior can be described only with 
its generated movement. Usually, this movement can be 
described by the movement of a rigid body, but, for a wide 
category of machines, a movement of an elementary particle 
is sufficient. Because our theory treats, for the present, only 
elementary particles, we will consider only this class of 
machines. 
During the design phase, compliances and control errors are 
not considered, or are approximately considered: this 
machine is described by the movement P(t1)=( x1, t1 ). After 
the machine realization, compliances and control errors can 
be evaluated with some precision: this machine is described 
by the movement P(t2)=( x2, t2 ). The behavior of the 
considered model, even if it is accurate, diverges from the 
measurements, which are described by the movement 
P(t3)=( x3, t3). Even the best measurements differ from the 
real behavior of the machine, which is described by the 
unknown movement P(t4)=( x4 , t4). Now the 
correspondences between the models can be exposed with 
the Fig. 2. 
 

 P(t1)=(x1,t1) 

P(t2)=(x2,t2) 

P(t3)=(x3,t3) 

P(t4)=(x4,t4) 

f12 

f23 

f34 

 
Fig. 2 Correspondence between different models  

of a mechanical machine 
 
Some observations are underlined. The correspondence 
function f23 can be fuzzy [11, 16] (or statistical) depending 
on the nature of the measurements. Because the model 
developed after the realization of the machine is extremely 
accurate uses a fuzzy (statistical) modelizing approach, the 
correspondence function f12 also exhibits a fuzzy (or 
statistical) nature. Furthermore, the best knowledge of the 
machine behavior is, usually, based on measurements, so 
the correspondence function f34 remains always unknown. 

 
Often, commercial bonds impose some realizing choices of 
a machine; so, in spite of a extremely precise design, the 
real machine exhibits an unexpected behavior. Therefore, it 
can be interesting, as well, to carry out a rather imprecise 
design, so as to reduce unnecessary efforts. But how much 
should the design be imprecise? To answer this question, we 
propose a second application of our theory. The second 
application regards on the evaluation of the quality of a 
machine starting from the quality of its components. 



In this application we point out the central component of a 
machine: the transmission. This component transforms the 
motion produced by the motor in the desired motion. The 
better the transmission is, closer the produced motion is to 
the desired motion. The motion produced by the motor is 
described by the movement P(t1)=( x1, t1 ). A transmission 
composed by a series of two components is considered. The 
output motion of the first component is described by 
Q(t1)=( x1, t1 ), while the output motion of the second 
component is described by R(t1)=( x1, t1 ). So the 
transmission can be described by the Fig. 3. 
 

 P(t1)=(x1,t1) 

Q(t1)=(x1,t1) 

R(t1)=(x1,t1) 

tPQ 

tQR 

 
Fig. 3 Desired behavior of a machine 

 
The real machine exhibits a different behavior, and the 
measured behavior is described in the space X 2 × T 2 (Fig. 
4). 
 
 P(t1)=(x1,t1) 

Q(t1)=(x1,t1) 

R(t1)=(x1,t1) 

tPQ 

tQR 

P(t2)=(x2,t2) 

Q(t2)=(x2,t2) 

R(t2)=(x2,t2) 

t’PQ

t’QR

f 112 

f 212 

f 312 
 

Fig. 4 Differences between measured and desired 
 behavior for a machine 

 
The correspondence functions f 1

12, f 2
12 and f 3

12 represents 
the correspondence between desired and measured 
behavior, respectively, of the motor, of the first 
transmission component and of the second transmission 
component. We suppose that the designer should plan the 
output motion of the motor: therefore he can decide the 
level of precision for his activity, only evaluating the quality 
of the transmission components. 
 
 
7   Conclusions 
A theory to describe movement of elementary particles was 
exposed. A hint on two very felt applications in mechanical 
engineering was showed. We reckon that an overall 
evaluation of the obtained results should pass through a 
close examination of the proposed applications. Therefore 
we will evaluate the opportunity to extend our theory, 
considering dynamical aspects or rigid body motions. 

 
Acknowledgments. The second author acknowledges the 
support of a Grant by the Romanian Academy for his 
research reported in the paper. 
 

 
References: 
[1] Borboni A., Cam Design with Evolution Strategies, 

SOSM 2003: 3rd Int. Conf. on Soft Computing, 
Optimization, Simulation & Manufacturing Systems, 
September 1-3 2003, Malta 

[2]Borboni A., Solution of the Inverse Kinematic Problem 
of a Serial Manipulator by a Fuzzy Algorithm, The 10th 
IEEE Conference on Fuzzy Systems, Melbourne, 
Australia, 2001 

[3] Borboni A., Teodorescu H. N., Fuzzy Models of Cam 
Systems, MEM2003: 5th International Conference on 
Mechanical Engineering 2003, October 13-15 2003, 
Crete, Greece 

[4]Borboni A., Teodorescu H. N., Mechanism Design with 
“Fuzzy Mechanics”: an Original Approach for Motion 
Planning, SIA 2003 Intelligent Systems and 
Applications, September 19-21 2003, Iasi, Romania 

[5]Bussola R., Faglia R., Incerti G., Magnani P.L., Tiboni 
M., Indexing Cam Mechanisms: A Complex 
Mathematical Model For Simulation, X World Congress 
on the Theory of Machines and Mechanisms, Oulu, 
Finland, 1999 

[6]Dubowsky S., Freudenstein F., Dynamic Analysis of 
Mechanical Systems With Clearances, ASME  J. of Eng. 
for Industry, 1971, 305-316 

[7]Fukuda T., Hirota K., Soft Computing in Mechatronics, 
Studies in Fuzziness and Soft Computing, Phisica-Verlag 
32, 1999 

[8]Magnani P.L., Ruggieri G., Meccanismi Per Macchine 
Automatiche, UTET, 1986 

[9]Novotny J., Optimum Design and Accuracy of a Double 
Cam Mechanism, VIII IFToMM Congress, Prague, 1991 

[10]Resconi G., Borboni A., Faglia G., Conceptual 
Mechanics, 1st International Conference on Advances in 
Mechanics and Mechatronics, March 25-27 2003, 
Udine, Italy 

[11]Ruspini E., Zadeh L., Bonissone P., Berenji H. R., 
Bedzek J. C., Keller J., The Theory and Application of 
Fuzzy Logic (Six Programs). IEEE Neural Network 
Council, 1992 

[12]Scheck F., Mechanics, Springer, 1999 
[13]Teodorescu H. N., Chaotic fuzzy systems and signals, 

Proc. Iizuka '92 Conference, Iizuka, 1992 
[14]Tzvetkova G. V., Resconi G., Network recursive 

structure of robot dynamics based on GSLT, European 
Congress on Systems Science, Rome 1-4 October 1996 

[15] Yamakawa T., Teodorescu H.N., Sofron E., Pavel S., 
Fuzzy models of mechanical phenomena exhibit chaotic 
behavior, Fuzzy Systems, Proc. ISKIT'92, Iizuka, 1992. 
pp. 29-32 

[16] Zadeh L., Fuzzy Logic. IEEE Computer I, 1988 
 
 

 


