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Abstract: - The option to reject an example in order to avoid the risk of a costly potential misclassification is
well-explored in the pattern recognition literature. In this paper, we look at this issue from the perspective of
statistical learning theory. Specifically, we look at ways of modeling the problem of adding a reject option to a
trained classifier, in terms of minimizing an appropriately defined risk functional, and discuss the applicability
thereof of some fundamental principles of learning, such as minimizing empirical risk and structural risk.
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1 Introduction

The primary focus of learning theory with regard to pat-
tern recognition problems has been on algorithms that
return a prediction on every example in the example
space. However, in many real life situations, it may be
prudent to reject an example rather than run the risk of
a costly potential misclassification.

The issue of introducing a reject option in a learn-
ing machine has been dealt with extensively in the pat-
tern recognition community. In many practical pattern
recognition problems, the problem of incorporating a
reject option falls into one of three categories: a) Mini-
mize the loss of the classifier over the example space,
given the costs of rejection and misclassification. b)
Maximize the accuracy of the classifier, given that the

rejection rate should not exceed a certain user-defined
threshold. c) Minimize the rejection rate of the classi-
fier, given that the accuracy should not go below a cer-
tain user-defined threshold.

This paper focuses on the first of these three prob-
lems. Typically, a learning algorithm first finds the op-
timal zero-reject hypothesis, and the optimal rejection
region is then calculated on this hypothesis. We shall
call this adecoupled rejection scheme.

The classical work in this regard, which is still used
by many practitioners, is by Chow [3], which discusses
the nature of the error-reject trade-off curve. This work
states that, if the a posteriori class probabilities can be
correctly estimated, the minimum risk rule is to choose
the class with the highest posterior probability, provided
that it exceeds the rejection thresholdT = b−c

b+a , where
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a denotes the gain from a correct classification,b de-
notes the cost of misclassification, andc denotes the
cost of rejection. However, this strategy may not prove
optimal in cases wherein the posterior probabilities are
not accurately estimated. To deal with this drawback,
methods such as class-related thresholds, and different
thresholds for ambiguity and distance-based rejection,
have also been explored in the literature [4, 7]. Also,
for learning algorithms that do not output class proba-
bilities, appropriate data-driven rejection methods have
been applied.

An alternate approach to learning with a reject op-
tion is the case where the learning algorithm has anem-
bedded reject option, i.e., it allows for rejection while
training the underlying classifier, and finds the optimal
rejection region and the optimal hypothesis on the pre-
dicted region simultaneously. Recently, there has been
work on training a support vector machine with an em-
bedded reject option [6], and on a modification of the
perceptron algorithm with a reject option [10]. In this
paper, however, we shall focus on the decoupled rejec-
tion scheme. A similar theoretical analysis for the em-
bedded rejection scheme has been dealt with in [9].

Most of the theoretical analysis of the reject op-
tion has been based with regard to the setting wherein
the classifier provides posterior probability estimates,
on the basis of which the appropriate rejection strategy
must be chosen. However, in many cases, the classifier
used may not provide probability estimates, nor may it
be easy to convert the classifier output thereof.

On the algorithmic side, methods more complicated
than a simple rejection threshold on a single classi-
fier have been explored, and their effectiveness demon-
strated on various problems. Examples include ambigu-
ity and distance related thresholds, class-related thresh-
olds and voting schemes among classifiers [7, 4, 5].

However, to the extent of our knowledge, the issue
of how this increase in complexity of the reject option
trades off against a corresponding increase in perfor-
mance, and how these two are related to the size of the
training sample, has not been explored.

On the other hand, the analysis of data-driven meth-
ods of training a classifier without a reject option has

been well studied in the statistical and computational
learning theory literature. This theory deals with the
study of the inductive principles that provide the moti-
vation for algorithms that learn from a set of examples.
In particular, it is concerned with the issue of how ac-
curacy and complexity of a classifier are related to the
sample size. However, it has not been extended to the
case where a classifier may reject a given example.

In this paper, we try to address this gap by analyz-
ing the problem of learning a reject option from a set
of examples, from the standpoint of statistical learning
theory.

Section 2 gives the mathematical formulation for
the learning problem studied here, and discusses the
applicability of some fundamental inductive principles
such as empirical and structural risk minimization to
this problem. Section 3 briefly analyzes the problem
of training a classifier on one set of examples, and de-
ciding upon the rejection region using another set. Fi-
nally, Section 4 presents some directions for further
work along these lines.

2 The problem of learning a rejection
hypothesis on a trained classifier

Let S = ((x1, y1), . . . (x`, y`)) be a labeled i.i.d. sam-
ple drawn from an unknown but fixed joint distribution
F (x, y), x ∈ X, y ∈ Y = {1, . . . m}, wherem is
the number of classes. A learning algorithmL uses the
sampleS to arrive at a hypothesish ∈ H, which, in case
a reject option is permitted, will outputh(x) ∈ {0}∪Y ,
where0 represents the reject option. Lethp ∈ Hp be
the hypothesis (without a reject option) that is trained
on the sample S. Let the loss function forhp be defined
as:

L1(x, y, hp) =

{
0 if hp(x) = y
1 if hp(x) 6= y

(1)

The first stage of the learning problem is to find a
classifierhp

opt which minimizes the risk functional:

R1(hp) =
∫

L1(x, y, hp) dF (x, y) (2)



However, since the distributionF (x, y) is unknown,
a good inductive principle would be to choose the hy-
pothesishp

` that minimizes the empirical risk:

Remp
1 (S, hp) =

1
`

∑̀
i=1

L1(xi, yi, h
p) (3)

on the basis of the sampleS of size`. Note, how-
ever, that finding the global minimum of the empiri-
cal risk may be non-trivial in a computational sense in
many cases. Methods such as the backpropagation algo-
rithm perform gradient descent on the hypothesis space
to arrive at a local minimum of the empirical risk.

The second stage of the process is to add the reject
option such that the overall cost is minimized. Let us
consider a simplified scenario wherein the rationale for
rejection of an example comes from the fact that the cost
of rejection is lower than the cost of misclassification.
We shall assume that the costs of misclassification and
rejection (as well as the gain from correct classification)
do not vary across classes. Without loss of generality,
we can assume that the loss due to rejection of an ex-
ample is0 ≤ γ ≤ 1.

Let θ ∈ Θ be the hypothesis that decides whether or
not the classifier should return a prediction on a given
example. The compound hypothesish ∈ H(Hp,Θ)
can thus be rewritten as:

h = (1− θ(x, hp
` ))h

p
` (x) (4)

The loss of the hypothesish is:

L2(x, y, h) = γθ(x, y, hp
` ) +

(1− θ(x, y, hp
` ))L1(x, y, hp

` )

=


0 if h(x) = y
γ if h(x) = 0
1 if h(x) 6= y, h(x) 6= 0

(5)

The objective of learning the reject problem is to
find θopt that minimizes the risk functional:

R2(h) =
∫

L2(x, y, h)dF (x, y)

= R1(h
p
` ) + Rr(h) (6)

where

Rr(h) =
∫

θ(x, hp
` )(γ − L1(x, y, hp

` ))dF (x, y) (7)

Rr can take values in the range[γ−1, γ], and repre-
sents the gain/loss in opportunity due to rejection. Since
R1 is constant as far as the second stage is concerned,
the objective is to findθ such that the second term in
equation (6) is as negative as possible. If it turns out to
be positive, then a better strategy would obviously be to
return a prediction on all examples. The learning prob-
lem in the second stage can now be restated as one of
findingθopt that minimizesRr.

It is illustrative to see that, by analyzing the inequal-
ity Rr(h) ≤ 0, we arrive at the conclusion:∫

θ(x,hp
`
)=1, L1(x,y,hp

`
)=0 dF (x, y)∫

θ(x,hp
`
)=1 dF (x, y)

≤ 1− γ

In other words, the probability of correct classifi-
cation of an example in the rejected region should not
exceed1 − γ, which is in concordance with the result
given by Chow’s threshold.

This method of modeling the risk functional is anal-
ogous to that given by the Local Risk Minimization
principle [11], where the learning problem is to mini-
mize

Rloc(h) =
∫

θ(x, hp)L1(x, y, hp) dF (x, y) (8)

However, this method differs from the one de-
scribed in this paper in that it works on the assumption
that θ is fixed before optimizinghp. Besides, since it
does not count the cost of rejection, optimizingθ and
hp together, or optimizingθ after hp could lead to a
compound hypothesish that operates on an extremely
restricted section of the example space where no mis-
classifications are made.

In the next subsection, we shall discuss the applica-
bility of the empirical risk minimization (ERM) princi-
ple for the learning problem described here.



2.1 The ERM principle for the decoupled
rejection scheme

Let θ` be the rejection hypothesis that minimizes the
empirical risk:

Remp
r (h) =

1
`

∑̀
i=1

Lr(xi, yi, h) (9)

where

Lr(x, y, h) = θ(x, hp
` )(γ − L1(x, y, hp

` )) (10)

We wish to bound the riskR2 of the hypothesis
h`(h

p
` , θ`) as a function of its empirical risk and the

complexity of the hypothesis classes used. The basic
results used to arrive at these bounds are given in Vap-
nik [11].

From [11], we know that the risk of the underlying
classifier (R1) is bounded by the following inequality,
with confidence1− η

R1(h
p
` ) ≤ Remp

1 (S, hp
` ) + Cp (11)

where

Cp =
εp(`)

2

(
1 +

√
1 +

4Remp
1 (S, hp

` )
εp(`)

)
(12)

εp(`) = 4
dp(ln 2`

dp
+ 1)− lnη

4

`
(13)

The quantitydp denotes the VC dimension of the
loss functionL1, defined using the hypothesis classHp.

The growth functionGΘ(`) of θ(x, hp
` ) is bounded

by a function ofdr, the VC dimension ofΘ, using
Sauer’s lemma. There are three possible values of
Lr(x, y, h)+1−γ. Using the growth function of the in-
dicator functionI((Lr(x, y, h)+1−γ)−δ), 0 ≤ δ ≤ 1,
we get a bound onGLr(`) as:

GLr(`) ≤ ln

(
3
(e`

dr

)dr

)
(14)

We can apply this inequality to get the following
bound forRr, with confidence1− η

Rr(h) ≤ Remp
r (S, h) + Cr (15)

where

Cr =
εr(`)

2

(
1 +

√
1 +

4(Remp
r (S, h) + 1− γ)

εr(`)

)
(16)

εr(`) = 4
dr(ln 2`

dp
+ 1)− ln η

12

`
(17)

By combining equations (11) and (15), the effec-
tive bound onR2 is therefore given by the following
inequality, with confidence1− 2η

R2(h`) ≤ Remp
1 (S, hp

` ) + Cp

+Remp
r (S, h`) + Cr (18)

In terms of practical applicability, we find that these
bounds are reasonable only as long as the sample size
` is sufficiently larger thandp anddr. As the complex-
ity of the classifier and the rejection hypothesis increase
with respect to the number of examples, the value of the
complexity termsCp andCr increase to the point where
the upper bound for the risk exceeds1.

2.2 VC dimension results for some rejection
schemes

In order to apply these bounds in practical situations,
it is necessary to know the VC dimension (or bounds
thereof) for some commonly used rejection hypotheses.
We present a few basic results here in this regard. Let
Φ(i|x), i = 1 . . .m be the output of a classifier for an
m-class problem, whereΦ represents the strength of the
prediction for each class, given an input examplex.

The VC dimension of a simple threshold on the
strength of the output is1. This is proved trivially, since
no more than one example on the real line can be shat-
tered (i.e., classified in all possible ways) by the set of
simple threshold functions.



Fumera & Roli [4] proposed a system of class-
related thresholds to improve classification accuracy.

θ(x,Φ) =

{
0 if Φ(i1|x) > Ti1

1 otherwise
(19)

wherei1 = arg maxi={1...m} Φ(i|x). The VC di-
mension of the above system in anm-class problem is
equal tom. By an extension of the previous result, it
is trivial to prove that a configuration ofm points can
be shattered by a system ofm thresholds. Using the
pigeonhole principle, we can then show that any addi-
tional example would fall into one of them classes, and
the threshold for that class cannot shatter both points.

Le Cun et al [7] applied the following system for re-
jection in an application to handwritten character recog-
nition: Let Φ(i|x) be defined as in the previous case.
The rejection hypothesisθ(x,Φ) takes a value of0 if
the following two conditions are satisfied:

Φ(i1|x) > T1

Φ(i1|x)− Φ(i2|x) > T2 (20)

where i1 is defined as in the previous case, and
i2 = arg maxi={1...m}{i1} Φ(i|x). The VC dimension
of this rejection system is2. It can be proved that, for
a set of examplesx1, x2 such thatΦ(i11|x1) > Φ(i21|x2)
andΦ(i21|x2) − Φ(i22|x2) > Φ(i11|x1) − Φ(i12|x1), one
can find thresholdsT1 andT2 such that all possible la-
belings ofx1 andx2 with respect toθ can be achieved.
Through a simple ordering argument, one can show that
there cannot exist three points that can be shattered by
this system.

2.3 Minimizing structural risk

Here we briefly discuss the concept of capacity con-
trol for our learning problem. It is clear from equation
(18) that the tightness of the bound on the actual risk of
the hypothesish` depends on two factors: the empirical
risk, and the complexity of the hypothesis classes.

In case of a coupled rejection scheme, the entire
learning happens in one stage, hence it is easier to look
at the issue of capacity control in terms of the growth

function of the compound hypothesish. In a decoupled
scheme, however, one would optimize the bias-variance
trade-off for the underlying classifierhp first, and then
optimize the trade-off for the rejection hypothesisθ.
Therefore, it may happen that the stage-wise optimiza-
tion may produce a sub-optimal solution, as compared
to one wherein both trade-offs are optimized together.
However, in many practical situations, it may be easier
to do a stage-wise optimization.

3 Use of training and validation sets

While implementing a reject option in real-life prob-
lems, many practitioners adopt a two-sample approach,
wherein the classifierhp is first trained with a sampleS1

of size`1, and the reject optionθ is learned with a sam-
pleS2 of size`2. This procedure automatically begs the
question:Given a sample of sizè, how do we optimally
split it into subsamples of sizeκ` and(1− κ)`?

If we make the simplifying assumption that, for
a given sample, both the hypothesis classes are rich
enough to achieve the minimum possible value of em-
pirical risk, then the tightness of the bound depends only
on εp(`) and εr(`). However, there does not exist a
closed-form solution for the minimum of the function
g(κ) = εp(κ`) + εr((1− κ)`).

Preliminary empirical analysis ofg(κ) suggests
that, when` is sufficiently larger thandp anddr, the
relationship betweendp

dr
and κ0

1−κ0
is given by:

κ0/(1− κ0) = a1 − a2 exp
(
− a3(

√
dp/dr − a4)

)
(21)

A reasonably good fit is also given by a linear re-

lationship betweenκ0/(1− κ0) and
√

dp/dr; however,
it does not capture the non-linearity very well. Note
that, while the value ofκ0 that minimizesg(κ) gives
the tightest bound under the assumptions stated above,
it does not guarantee an optimal split.

From a practitioner’s point of view, the optimal
value of κ can be used to construct an experiment
wherein the total sample of size` is repeatedly divided
into two subsamples and used for training the classifier



and the rejection hypothesis. This approach is akin to
that of k-fold cross-validation, and helps in desensitiz-
ing the classifier to idiosyncrasies of a particular split.

4 Scope for further work

In this paper, we have approached the problem of learn-
ing with a decoupled reject option from the point of
view of statistical learning theory. To this end, we have
presented a two-stage formulation of the learning prob-
lem, and discussed the applicability of the ERM prin-
ciple thereof. Finally, we have discussed the issue of
using two samples, one for training the classifier, and
the other for learning the reject option.

This analysis can be extended to other methods of
applying a reject option, such as an ensemble of classi-
fiers combined using a voting scheme. The complexity
of the voting scheme (or any other combiner), as well
as the complexity of the individual classifiers, will then
determine the risk bound.
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