
Boolean Neural Networks

ROMAN KOHUT, BERND STEINBACH
Institute of Computer Science

Freiberg University of Mining and Technology
Bernhard-von-Cotta-Straße 2, D-09596 Freiberg,

GERMANY

Abstract: - In this paper, we present a new type of neuron, called Boolean neuron. Further, we suggest the
general structure of a neural network that includes only Boolean neurons and may realize several sets of
Boolean functions. The advantages of these neural networks consist in the reduction of memory space and
computation time in comparison to the representation of Boolean functions by usual neural networks. The
Boolean neural network may be mapped to a FPGA so that our new training algorithms substitute classical
design methods of these circuits. In the example, we show the decomposition of a set of Boolean functions into
common basic functions and their mapping to the general Boolean neural network.

Key-Words: - Boolean neuron, BNN, data representation, FTFS, functions set

1 Introduction
There are very strong developments of information
technologies in the field of artificial intelligence,
presently. Recent researches in neurology and
neurobiology produced convincing results, which
prove perfection of natural processes and living
beings, humans particularly [10]. That also impels
neural mathematics and neural computing to use
principles of the behavior of human memory, mind
and central neural system.

The range of use of neural computers, genetic
algorithms or technique of chaos theory is not
limited to data mining, quantum computing or
production of robots. Having more than half a
century of history behind, artificial neural
networks, referred here as neural networks, initially
was created to simulate Boolean functions [5] and
first conclusions about the future of a new branch
of science based on results of those simulations.
Some times later, intensive research produced
incredible variety of neural architectures and neural
paradigms for different purposes. The range of
usage of neural networks became much wider than
just Boolean functions.

In this paper, we return to the root and apply
neural network technique for compact
representation and fast computation of Boolean
functions. Currently, Di Wang and Narendra S.
Chaudhari suggest new approaches for Boolean
neural networks. Unfortunately, their methods for
construction of Boolean neural networks, in detail
Multi-Core Learning (MCL), Multi-Core Expand-

and-Truncate Learning (MCETL) [2], and Fast
Covering Learning Algorithm (FCLA) [3] are
unsuitable for sets of Boolean functions. Moreover,
their theory does not restrict to Boolean values and
Boolean operations, and therefore it is not well
suitable for FPGA circuits.

Vinay Deolalikar showed in [12] the ability of
a Boolean neural network comprising only neurons
with zero thresholds and Boolean weights to map
given samples of a Boolean function. The author
developed a mathematical model describing a
network. It was shown that proposed model is quite
amenable to algebraic manipulation. A key feature
of the model is that it replaces the two input and
output variables with a single "normalized"
variable. This approach maps a Boolean function to
a Boolean neural network using the back
propagation, which needs very long time for the
training process. For that, reason is searching for
more an efficient solution.

Our previously suggested approaches [9] are
too complicated for large Boolean functions, as
well.

The rest of the paper has the following
structure. Section 2 describes the problem of
unacceptably large size of operating memory
required for neural networks working with Boolean
data. A new type of neural element, so called
Boolean neuron is introduced in section 3. Section
4 describes general algorithms for training and
using of a Boolean neural network. Section 5 shows
in an example how a set of Boolean functions can

be implemented as Boolean neural network.
Section 6 summarizes the paper.

2 The Problem
There are many representations of Boolean
functions. The simplest representations of a
Boolean function are a formula or a table that
defines the function value for each of the n2 input
vectors. However, these representations of Boolean
functions have several shortcomings and do not
satisfy all requirements of practical tasks. As result,
a number of alternative representations of Boolean
functions were proposed, which eliminate some of
the disadvantages. Widely used are Karnaugh-
Planes, Ternary Vector Lists - TVL, Binary
Decision Diagrams - BDD etc. However, aside
from advantages even these representations of
Boolean functions have their own disadvantages as
well. After analyzing their disadvantages, we
propose the use of neural networks for
representation of Boolean functions.

Some of the advantageous properties of neural
networks are the common structure for different
behaviors and the fast calculation of the
implemented functions. A very important approach
is the implicit decomposition of functions modeled
by the neurons.

As well known, McCulloch and Pitts
introduced neural networks in their seminal work
[5]. This first type of a neural network models the
function of a nervous system. Later on, it was
called Boolean network. A node, together with its
output channel, was bi-stable, i.e., it was either in
the state zero or in the state one [4]. We emphasize
that the root of the scientific field of neural
networks is closed connected to the Boolean
domain. Unfortunately, the Boolean neural
networks suggested by McCulloch and Pitts
introduced only a new theory but was not used for
practical applications.

The main stream of the development of neural
networks moved then outside of the Boolean
domain. An overview of existing paradigms and
approaches and their disadvantages are described in
[2]. Here, we only repeat that all training
algorithms can be classified into two categories
based on their training process. The first category
fixes the network structure, in detail the number of
hidden layers and the number of neurons in each of
them, and adjusts connection weights and
thresholds in the parameter space by decreasing
errors between model outputs and desired outputs.

Examples of such methods are BackPropagation
(BP) and Radial Basis Function (RBF). These
algorithms cannot guarantee fast convergence and
need more training time. The second category,
called sequential training algorithms, adds hidden
layers and hidden neurons in the training process.
Examples of such methods are Expand-and-
Truncate Learning (ETL) algorithm and
Constructive Set Covering Learning Algorithm
(CSCLA). Sequential training algorithms are
promising because they guarantee faster
convergence and need less training time [2].

Among existing types of neural networks, we
chose the neural network model, called “Functional
on the tabular functions set” (FTFS). Their
advantages are higher precision and shorter time for
learning in comparison with other models of neural
networks.

In order to model Boolean functions efficiently,
we suggest functional changes of the neural
element and adapt this new type of neuron to the
algorithms for training and using of the neural
network FTFS.

3 Boolean Neuron
The basic element in modern neural networks,
including the model “Functional on the tabular
functions set”, is the programmable neuron, which
defines relation between vector of input signals
Inp and output signal Out .

()0,, xwInpfOut = (1)

Where { }
xNxxxInp ,...,, 21= – input vector of the

neuron,
xN – number of inputs,
{ }

xNwwww ,...,, 21= – vector of synaptic
weights,

0x – bias,
Out – output of the neuron,
f – Dependency, which includes

nonlinear transformation (transfer
function, activation function).

In general, input signals, weighting coefficients and
bias are real numbers, less often – integers. The
output Out is determined by an activation
function, and can be a real or integer number.
Using such values for Boolean data, which requires
only one bit for each value, is clearly inefficient
because of unnecessary memory expenses. To
resolve this inefficiency we propose a Boolean

neuron.
A Boolean neuron (or Boolean neural element)

operates with Boolean signals and uses only
Boolean operations. According to definition [6]
and (1), the output signal of the Boolean neuron is
defined as:

()BBBB wInpfOut ,= (2)

Where index B indicates Boolean values and

{ }
xNB xxxInp ,...,, 21= , }1,0{∈ix ,

{ }
xNB wwww ,...,, 21= , }1,0{∈iw ,

Bf - Boolean transfer function,

}1,0{, ∈BB Outf .

In the following, we omit the index B because only
Boolean neurons are considered.

The structure of such a Boolean neuron is
unchanged comparing to regular neuron. The
general computational process and the structure of
the neural network are unchanged, too [9 and 13].
The structure of Boolean neuron is shown in
figure 1.

The limitation to Boolean operations reduces time
for converting input vector into output signal
significantly. An additional advantage of the
Boolean neuron consists in the reduction of
necessary memory size.

Replacing normal neural elements by Boolean
neurons in FTFS neural network we create a new
type of neural network, called Boolean neural
network (BNN). Boolean neural network belong
like FTFS networks to the class of feed forward
neural networks.

Fig. 2. General structure of BNN

As shown in figure 2 the basic structure of the
Boolean neural network has additional to usual
projective connections between neurons of the
neighbor layers also lateral connections between
neurons of the same layer. This feature of the
structure results from the common paradigm of
training neural networks FTFS.

Note, there are distinctions between Boolean
neurons on the hidden layer and Boolean neurons
on the output layer of the BNN. In general, each
neuron on the hidden layer has a special Boolean
transfer function, which is different form the
Boolean transfer function of all other neurons in
this layer. The mathematical description of the
neuron with number z on the hidden layer is:

()wInpfOut zz ,][][= (3)

where
][zOut - output signal of the neuron with

number z ,
][zf - transfer function of the neuron with

number z ,
z - index NZz ,...,1=

NZ - number of neurons on the hidden
layer,
][][ji ff ≠ : ∀ ji ≠ ; []NZji ,1, ∈ .

All neurons of the output layer have a fixed

Boolean transfer function. This Boolean function
connects the weighted inputs by exclusive OR
(XOR) operations.

()][

0

][j
ii

Z

i

j wInpOut
N

∧=⊕
=

 (4)

Where
j – number of neuron on the output

layer of the Boolean neural
network,

⊕ – Boolean operation „XOR”,
∧ – Boolean operation „AND”.

f
Output

y

xN

wn

x3

x2

x1

w3

w1

w2
Neural element

Inputs Weights of synaptic connections

Fig. 1. General structure of Boolean neuron

x0

w0
()0,, xwxfy =

x1

x2

xNx

y

…
…

The following description of the algorithms of
training and using shows the main difference
between BNN and common FTFS network.

4 Training and using of the Boolean
neural network
Boolean neural networks need like all feed forward
neural networks two basic procedures, training and
using. Frequently, the training process is called
learning. Correspondingly, the using process solves
the tasks and describes how the BNN works.

The starting point of the learning algorithm of
BNN is the function table of the set of Boolean
functions. This table is also called matrix A that
covers the input and output signals as completes
training set of the neural network [11]. The matrix
A has xN2 rows and yx NN + columns, where xN

is the number of Boolean variables and yN is the
number of Boolean functions. Input signals of the
network are argument values and output signals are
the values of the Boolean functions.

yxxN
xxN

xxNxNxN

yxxx

yxxx

yxxx

yxNxNxN
xxNxNxN

yx

yx

yx

NNNN

NNiNiNiii

NNNN

NNNN

NN

NiiiNiii

NN

NN

aaaaa
aaaaa
aaaaa
aaaaa

yyyxxx
yyyxxx
yyyxxx
yyyxxx

A

++

++

++

++

=

==

,21,2,22,21,2

,1,,2,1,

,21,2,22,21,2

,11,1,12,11,1

,22,21,2,22,21,2

,2,1,,2,1,

,22,21,2,22,21,2

,12,11,1,12,11,1

(5)

The base idea of the suggested training
algorithm of the neural net is representation of
Boolean functions by final polynomials of firstly
unknown, unique Boolean base functions. The
algorithm describes special decomposition of a set
of Boolean functions into the set simpler, firstly
unknown, unique Boolean base functions. Analog
to the training algorithm of usual FTFS neural
networks [11], our algorithm bases on a
geometrical aim that should reduce the space
dimension. The training algorithm consists of the
following steps.

1. Compute the coefficient iD for each row of the
matrix A :

ji

NN

j
i aD

yx

,
1
∨
+

=

= . (6)

2. If all coefficients iD equals to zero, then the
algorithm stops. Otherwise, take a row vector zam

from the matrix A , where the coefficients 1=iD
and the index z is number of training cycle.
3. Based on zam compute the coefficients zik , for
each row of the matrix A :

() ijzji

NN

j
zi Damak

yx

∧∧= ∨
+

=
,,

1
, . (7)

4. Calculate a new matrix A by (8):

)(,,
)(

,
)1(

, zijz
z
ji

z
ji kamaa ∧⊕=+ . (8)

)1(
,
+z
jia and)(

,
z
jia are coefficients of the matrix A after

training cycle number 1+z and z corresponding.
If coefficients 0, =zik , no calculations are

necessary for the row i .
A similar learning algorithm for general neural

net FTFS is the orthogonalization procedure by
Gramm-Shmidt [7, 8 and 11]. Our learning proce-
dure for BNN includes successive transformation
of the matrix A until (9) is valid.

0)2(
, =xN

jia (9)

The results of the training algorithm are the
unique Boolean base functions zk , NZz ,,1K=
and the weight vectors jam , yNj ,,1K= of the

output neurons. NZ is the number of neurons on
the hidden layer that is equal to number of training
cycles.

The unique Boolean base functions zk ,
[]NZz ,1∈∀ depend on input signals :x

()xfkz = . (10)

and are realized by the neurons of hidden layer of
Boolean neural network.

Using these data, the primary implementations
matrix A can represent as shown in (11) that
defines the using procedure of the BNN.

()ziiz

Z

i
ji kama

N

,,
1

)0(
, ∧=⊕

=

 (11)

)0(
, jia are coefficients of primary matrix A .

The Boolean neural network creates in the using
regime the Boolean functions (12) depending on
the vector of input signals x.

() ()()xkamxy zsNsz

Z

i
s x

N

,,
1

∧= +
=
⊕ (12)

5 Example
For the better understanding and verifying of the
obtained results, we show an example. Given is the
set of simple Boolean functions 721 ,...,, yyy ;

),(21 xxfyi = in the table 1. From (6) follows
that 1=D . According step 2 of the above algorithm
we have to select the row am where 1=iD ; in this
case we have a free choice and take the last row for

1am . The Boolean function 1k of table 1 is
calculated by (7).

Table 1: Primary implementation matrix A

x1 x2 y1 y2 y3 y4 y5 y6 y7 D k1
0 0 0 0 0 1 1 1 1 1 1
0 1 0 1 1 0 0 0 1 ⇒ 1 ⇒ 1
1 0 1 0 1 0 1 1 0 1 1
1 1 0 0 0 1 0 1 1 1 1

am1 am2 am3 am4 am5 am6 am7 am8 am9
1 1 0 0 0 1 0 1 1

Using formula (8) and the vectors 1k and 1am we
calculate the new matrix A in table 2, whereby the
values of the last row of matrix became zero.
In the next cycles, the same steps are repeated. We
selected the rows am in the order of 2, 1 and 3.

Table 2: Matrix A after the first step of training

x1 x2 y1 y2 y3 y4 y5 y6 y7 D k2

1 1 0 0 0 0 1 0 0 1 1
1 0 0 1 1 1 0 1 0 ⇒ 1 ⇒ 1
0 1 1 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0

am1 am2 am3 am4 am5 am6 am7 am8 am9
1 0 0 1 1 1 0 1 0

Table 3: Matrix A after the step 2 of training

x1 x2 y1 y2 y3 y4 y5 y6 y7 D k3

0 1 0 1 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 ⇒ 0 ⇒ 0
1 1 1 1 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0

am1 am2 am3 am4 am5 am6 am7 am8 am9
0 1 0 1 1 1 1 1 0

Table 4: Matrix A after the step 3 of training
x1 x2 y1 y2 y3 y4 y5 y6 y7 D k4
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ⇒ 0 ⇒ 0
1 0 1 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0

am1 am2 am3 am4 am5 am6 am7 am8 am9
1 0 1 0 1 1 0 0 1

Table 5: Matrix A after the training

x1 x2 y1 y2 y3 y4 y5 y6 y7 D
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ⇒ 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

At the end of the fourth cycle is 0=D . Therefore
the computation stops. It means that artificial
neural network is learned and ready to run in using
regime. The architecture of the associated Boolean
neural network is shown in figure 3.

Fig. 3. Structure of Boolean neural network to

represent set of Boolean functions.

The number of neurons on the hidden layer is

equal to number of executed cycles in training
algorithm. On the output layer we have 7 neurons.
Each of them represents one Boolean functions in
the set.
In consequence of learning procedure, we have
obtained the matrix K and matrix AM . The
columns 1 and 2 of matrix AM are unnecessary
because the neural network will represent in using
regime only output values of the Boolean
functions 721 ,...,, yyy . Thus, storage of these
vectors is senseless.

For the verification of using algorithm of
neural network, calculate the output signals of the
initial set of Boolean functions 721 ,...,, yyy by the
equation (11). The result is shown in table 6.

For example the value () === 1,0 213 xxy

k1

k2

k3

x1

x2

y2

…

k4

y1

y7

() ()() () ()()⊕∧⊕∧= 21,011,0 5251 amkamk
() ()() () ()() ()⊕∧=∧⊕∧⊕ 0141,031,0 5453 amkamk
() () () 10010101011 =⊕⊕⊕=∧⊕∧⊕∧⊕

The calculation of ()1,03y is highlighted in the
table 6 an explicitly, give in (11).
Table 6: Reconstruction of the set of Boolean
functions
 K AM
k1 k2 k3 k4 am3 am4 am5 am6 am7 am8 am9

1 1 1 0 1 0 0 0 1 0 1 1
1 1 0 0 2 0 1 1 1 0 1 0
1 1 1 1 3 0 1 1 1 1 1 0
1 0 0 0 4 1 0 1 1 0 0 1

x1 x2 y1 y2 y3 y4 y5 y6 y7
0 0 0 0 0 1 1 1 1
0 1 0 1 1 0 0 0 1
1 0 1 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1

The Boolean neural network is now ready for work.

6 Conclusion and Future Work
Neural network models are widely used to solve
tasks on real and rarely integer numbers. Due to
smaller errors multi-byte data representation are
preferred. Even the smallest computing error is
illegal for Boolean logic. The direct using of the
typical types of the neural networks for the tasks
based on Boolean logic needs inadmissible size of
memory. As result of this analysis, we found, that
the handling of Boolean function needs special
Boolean neural networks.
We introduced Boolean neuron and its application
in Boolean neural networks (BNN). In detail, we
described the mathematic definition of the Boolean
neuron, the structure of Boolean neural network,
the training algorithm for such a neural network
and the general using algorithm of BNNs. The main
benefits of such Boolean neurons are minimizing of
the necessary memory, the decreasing of the
calculation time and their simple possible mapping
to the basic elements of FPGAs.

Suggested algorithms use common learning
and using principles of the neural networks and
especially non-iteration learning of feed-forward
neural networks. Our approach can be used for
other structures of neural network, too.

In the future, we are going to develop the
neural net structure for clusterization-classification

Boolean functions on the base proposed Boolean
neuron. Further, we continue our research for
optimal Boolean functions presentation and
calculation by using neural nets. Based on the
results described in this paper we will design and
develop а program, which used Boolean neural
networks for compact presentation, decomposition
and fast calculation of Boolean functions.

References:
[1] Dayhoff, Judith E. Neural networks architectures:

an introduction. - Van Nostrand Reinhold, New
York, 1990.- 260 p.

[2] Di Wang and Narendra S. Chaudhari, Binary Neural
Network Training Algorithms Based On Linear
Sequential Learning, Intarnational Journal of Neural
Systems, 13(5) Oct. 2003

[3] Di Wang and Narendra S. Chaudhari, An Approach
for Construction of Boolean Neural Networks Based
on Geometrical Expansion. (www.ntu.edu.sg/home/
asnarendra)

[4] Lauria, F. E., M. Sette, S. Visco Adaptable Boolean
neural networks - Consorzio Editoriale Fridericiana,
Liguori ed. Napoli -1997 212 ISBN 88-207-2676-9

[5] McCulloch W.S., Pitts W. A logical calculus of
ideas immanent in nervous activity, Bull.
Mathematical Biophysics. - 1943. - vol. 5. - pp. 115-
133.

[6] Minsky M. and Papert S. Perceptrons: An
Introduction to Computational Geometry. MIT
Press, Cambridge, MA, 1969.

[7] Novikov, L., Obschta, A.: Numerical and
approximate methods of applied mathematics. (in
ukr.) Script of lectures. - Lviv: NU “Lviv
politechnic”, 1998.

[8] Sigorsky, V.: Mathematical engineer device.. (in
rus) - Кiev, 1975.

[9] Steinbach, B. Kohut, R.: Neural Networks – A
Model of Boolean Functions. Proceedings of 5th
International Workshop on Boolean Problems,
Freiberg, Germany, September 19-20, 2002;

[10] Tkachenko, R.: Kohut, R.: Feed forward neural
networks: the problems of synthesis and using. (In
Ukrainian), Bulletin of Lviv Polytechnic National
University: Computer Engineering and Information
Technologies, № 433, Lviv, pp. 166-171, 2001.

[11] Tkachenko R.: Feed forward neural networks with
non-iteration learning procedure. Dissertation thesis,
Lviv, 2000.

[12] Vinay D.: Mapping Boolean Functions with Neural
Networks having Binary Weights and Zero
Thresholds, HP Laboratories Palo Alto, HPL-2001-
64 (R.1), Reprinted, with permission, from IEEE
Transactions on Neural Networks, Copyright 2001
IEEE, July, 2001

[13] Wasserman, P.: Neural Computing Theory and
Practice. Van Nostrand Reinhold, New York, 1989.

 Eq. (11)

