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Abstract: - In this paper, we present a new type of neuron, called Boolean neuron. Further, we suggest the 
general structure of a neural network that includes only Boolean neurons and may realize several sets of 
Boolean functions. The advantages of these neural networks consist in the reduction of memory space and 
computation time in comparison to the representation of Boolean functions by usual neural networks. The 
Boolean neural network may be mapped to a FPGA so that our new training algorithms substitute classical 
design methods of these circuits. In the example, we show the decomposition of a set of Boolean functions into 
common basic functions and their mapping to the general Boolean neural network. 
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1   Introduction 
There are very strong developments of information 
technologies in the field of artificial intelligence, 
presently. Recent researches in neurology and 
neurobiology produced convincing results, which 
prove perfection of natural processes and living 
beings, humans particularly [10]. That also impels 
neural mathematics and neural computing to use 
principles of the behavior of human memory, mind 
and central neural system.  

The range of use of neural computers, genetic 
algorithms or technique of chaos theory is not 
limited to data mining, quantum computing or 
production of robots. Having more than half a 
century of history behind, artificial neural 
networks, referred here as neural networks, initially 
was created to simulate Boolean functions [5] and 
first conclusions about the future of a new branch 
of science based on results of those simulations. 
Some times later, intensive research produced 
incredible variety of neural architectures and neural 
paradigms for different purposes. The range of 
usage of neural networks became much wider than 
just Boolean functions. 

In this paper, we return to the root and apply 
neural network technique for compact 
representation and fast computation of Boolean 
functions. Currently, Di Wang and Narendra S. 
Chaudhari suggest new approaches for Boolean 
neural networks. Unfortunately, their methods for 
construction of Boolean neural networks, in detail 
Multi-Core Learning (MCL), Multi-Core Expand-

and-Truncate Learning (MCETL) [2], and Fast 
Covering Learning Algorithm (FCLA) [3] are 
unsuitable for sets of Boolean functions. Moreover, 
their theory does not restrict to Boolean values and 
Boolean operations, and therefore it is not well 
suitable for FPGA circuits.  

Vinay Deolalikar showed in [12] the ability of 
a Boolean neural network comprising only neurons 
with zero thresholds and Boolean weights to map 
given samples of a Boolean function. The author 
developed a mathematical model describing a 
network. It was shown that proposed model is quite 
amenable to algebraic manipulation. A key feature 
of the model is that it replaces the two input and 
output variables with a single "normalized" 
variable. This approach maps a Boolean function to 
a Boolean neural network using the back 
propagation, which needs very long time for the 
training process. For that, reason is searching for 
more an efficient solution. 

Our previously suggested approaches [9] are 
too complicated for large Boolean functions, as 
well. 

The rest of the paper has the following 
structure. Section 2 describes the problem of 
unacceptably large size of operating memory 
required for neural networks working with Boolean 
data. A new type of neural element, so called 
Boolean neuron is introduced in section 3. Section 
4 describes general algorithms for training and 
using of a Boolean neural network. Section 5 shows 
in an example how a set of Boolean functions can 



 

be implemented as Boolean neural network. 
Section 6 summarizes the paper. 
 
 
2   The Problem 
There are many representations of Boolean 
functions. The simplest representations of a 
Boolean function are a formula or a table that 
defines the function value for each of the n2  input 
vectors. However, these representations of Boolean 
functions have several shortcomings and do not 
satisfy all requirements of practical tasks. As result, 
a number of alternative representations of Boolean 
functions were proposed, which eliminate some of 
the disadvantages. Widely used are Karnaugh-
Planes, Ternary Vector Lists - TVL, Binary 
Decision Diagrams - BDD etc. However, aside 
from advantages even these representations of 
Boolean functions have their own disadvantages as 
well. After analyzing their disadvantages, we 
propose the use of neural networks for 
representation of Boolean functions. 

Some of the advantageous properties of neural 
networks are the common structure for different 
behaviors and the fast calculation of the 
implemented functions. A very important approach 
is the implicit decomposition of functions modeled 
by the neurons.  

As well known, McCulloch and Pitts 
introduced neural networks in their seminal work 
[5]. This first type of a neural network models the 
function of a nervous system. Later on, it was 
called Boolean network. A node, together with its 
output channel, was bi-stable, i.e., it was either in 
the state zero or in the state one [4]. We emphasize 
that the root of the scientific field of neural 
networks is closed connected to the Boolean 
domain. Unfortunately, the Boolean neural 
networks suggested by McCulloch and Pitts 
introduced only a new theory but was not used for 
practical applications. 

The main stream of the development of neural 
networks moved then outside of the Boolean 
domain. An overview of existing paradigms and 
approaches and their disadvantages are described in 
[2]. Here, we only repeat that all training 
algorithms can be classified into two categories 
based on their training process. The first category 
fixes the network structure, in detail the number of 
hidden layers and the number of neurons in each of 
them, and adjusts connection weights and 
thresholds in the parameter space by decreasing 
errors between model outputs and desired outputs. 

Examples of such methods are BackPropagation 
(BP) and Radial Basis Function (RBF). These 
algorithms cannot guarantee fast convergence and 
need more training time. The second category, 
called sequential training algorithms, adds hidden 
layers and hidden neurons in the training process. 
Examples of such methods are Expand-and-
Truncate Learning (ETL) algorithm and 
Constructive Set Covering Learning Algorithm 
(CSCLA). Sequential training algorithms are 
promising because they guarantee faster 
convergence and need less training time [2]. 

Among existing types of neural networks, we 
chose the neural network model, called “Functional 
on the tabular functions set” (FTFS). Their 
advantages are higher precision and shorter time for 
learning in comparison with other models of neural 
networks. 

In order to model Boolean functions efficiently, 
we suggest functional changes of the neural 
element and adapt this new type of neuron to the 
algorithms for training and using of the neural 
network FTFS. 

 
 

3   Boolean Neuron 
The basic element in modern neural networks, 
including the model “Functional on the tabular 
functions set”, is the programmable neuron, which 
defines relation between vector of input signals 
Inp  and output signal Out . 

( )0,, xwInpfOut =  (1) 

Where { }
xNxxxInp ,...,, 21= – input vector of the 

neuron, 
xN  – number of inputs, 
{ }

xNwwww ,...,, 21= – vector of synaptic 
weights, 

0x  – bias, 
Out  – output of the neuron, 
f  – Dependency, which includes 

nonlinear transformation (transfer 
function, activation function). 

In general, input signals, weighting coefficients and 
bias are real numbers, less often – integers. The 
output Out  is determined by an activation 
function, and can be a real or integer number. 
Using such values for Boolean data, which requires 
only one bit for each value, is clearly inefficient 
because of unnecessary memory expenses. To 
resolve this inefficiency we propose a Boolean 



 

neuron. 
A Boolean neuron (or Boolean neural element) 

operates with Boolean signals and uses only 
Boolean operations. According to definition [6] 
and (1), the output signal of the Boolean neuron is 
defined as: 

( )BBBB wInpfOut ,=  (2) 

Where index B indicates Boolean values and  

{ }
xNB xxxInp ,...,, 21= , }1,0{∈ix , 

{ }
xNB wwww ,...,, 21= , }1,0{∈iw , 

Bf  - Boolean transfer function, 

}1,0{, ∈BB Outf . 
 
In the following, we omit the index B because only 
Boolean neurons are considered. 

The structure of such a Boolean neuron is 
unchanged comparing to regular neuron. The 
general computational process and the structure of 
the neural network are unchanged, too [9 and 13]. 
The structure of Boolean neuron is shown in 
figure 1. 

 

 
 

The limitation to Boolean operations reduces time 
for converting input vector into output signal 
significantly. An additional advantage of the 
Boolean neuron consists in the reduction of 
necessary memory size.  

Replacing normal neural elements by Boolean 
neurons in FTFS neural network we create a new 
type of neural network, called Boolean neural 
network (BNN). Boolean neural network belong 
like FTFS networks to the class of feed forward 
neural networks. 

 

 

Fig. 2. General structure of BNN 
 

As shown in figure 2 the basic structure of the 
Boolean neural network has additional to usual 
projective connections between neurons of the 
neighbor layers also lateral connections between 
neurons of the same layer. This feature of the 
structure results from the common paradigm of 
training neural networks FTFS. 

Note, there are distinctions between Boolean 
neurons on the hidden layer and Boolean neurons 
on the output layer of the BNN. In general, each 
neuron on the hidden layer has a special Boolean 
transfer function, which is different form the 
Boolean transfer function of all other neurons in 
this layer. The mathematical description of the 
neuron with number z  on the hidden layer is: 

( )wInpfOut zz ,][][ =  (3) 

where  
][ zOut  - output signal of the neuron with 

number z , 
][ zf  - transfer function of the neuron with 

number z , 
z  - index  NZz ,...,1=  

NZ  - number of neurons on the hidden 
layer, 
][][ ji ff ≠ :   ∀  ji ≠ ; [ ]NZji ,1, ∈ . 

 
All neurons of the output layer have a fixed 

Boolean transfer function. This Boolean function 
connects the weighted inputs by exclusive OR 
(XOR) operations. 

( )][

0

][ j
ii

Z

i

j wInpOut
N

∧=⊕
=

 (4) 

Where 
j  – number of neuron on the output 

layer of the Boolean neural 
network, 

⊕  – Boolean operation „XOR”, 
∧  – Boolean operation „AND”. 
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The following description of the algorithms of 
training and using shows the main difference 
between BNN and common FTFS network. 
 
 
4   Training and using of the Boolean 
neural network 
Boolean neural networks need like all feed forward 
neural networks two basic procedures, training and 
using. Frequently, the training process is called 
learning. Correspondingly, the using process solves 
the tasks and describes how the BNN works.  

The starting point of the learning algorithm of 
BNN is the function table of the set of Boolean 
functions. This table is also called matrix A  that 
covers the input and output signals as completes 
training set of the neural network [11]. The matrix 
A  has xN2  rows and yx NN +  columns, where xN  

is the number of Boolean variables and yN  is the 
number of Boolean functions. Input signals of the 
network are argument values and output signals are 
the values of the Boolean functions. 
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The base idea of the suggested training 
algorithm of the neural net is representation of 
Boolean functions by final polynomials of firstly 
unknown, unique Boolean base functions. The 
algorithm describes special decomposition of a set 
of Boolean functions into the set simpler, firstly 
unknown, unique Boolean base functions. Analog 
to the training algorithm of usual FTFS neural 
networks [11], our algorithm bases on a 
geometrical aim that should reduce the space 
dimension. The training algorithm consists of the 
following steps. 
 
1. Compute the coefficient iD  for each row of the 
matrix A : 

ji

NN

j
i aD

yx

,
1
∨
+

=

= . (6) 

2. If all coefficients iD  equals to zero, then the 
algorithm stops. Otherwise, take a row vector zam  

from the matrix A , where the coefficients 1=iD  
and the index z  is number of training cycle. 
3. Based on zam  compute the coefficients zik ,  for 
each row of the matrix A : 

( ) ijzji

NN

j
zi Damak

yx

∧∧= ∨
+

=
,,

1
, . (7) 

4. Calculate a new matrix A  by (8): 

)( ,,
)(

,
)1(

, zijz
z
ji

z
ji kamaa ∧⊕=+ . (8) 

)1(
,
+z
jia and )(

,
z
jia  are coefficients of the matrix A  after 

training cycle number 1+z  and z  corresponding. 
If coefficients 0, =zik , no calculations are 

necessary for the row i . 
A similar learning algorithm for general neural 

net FTFS is the orthogonalization procedure by 
Gramm-Shmidt [7, 8 and 11]. Our learning proce-
dure for BNN includes successive transformation 
of the matrix A  until (9) is valid. 

0)2(
, =xN

jia  (9) 

The results of the training algorithm are the 
unique Boolean base functions zk , NZz ,,1K=  
and the weight vectors jam , yNj ,,1K=  of the 

output neurons. NZ  is the number of neurons on 
the hidden layer that is equal to number of training 
cycles. 

The unique Boolean base functions zk , 
[ ]NZz ,1∈∀  depend on input signals :x  

( )xfkz = . (10) 

and are realized by the neurons of hidden layer of 
Boolean neural network. 

Using these data, the primary implementations 
matrix A  can represent as shown in (11) that 
defines the using procedure of the BNN. 

( )ziiz

Z

i
ji kama

N

,,
1

)0(
, ∧=⊕

=

 (11) 

)0(
, jia  are coefficients of primary matrix A . 



 

The Boolean neural network creates in the using 
regime the Boolean functions (12) depending on 
the vector of input signals x.  

( ) ( )( )xkamxy zsNsz

Z

i
s x

N

,,
1

∧= +
=
⊕  (12) 

 
 
5   Example 
For the better understanding and verifying of the 
obtained results, we show an example. Given is the 
set of simple Boolean functions 721 ,...,, yyy ; 

),( 21 xxfyi =  in the table 1. From (6) follows 
that 1=D . According step 2 of the above algorithm 
we have to select the row am  where 1=iD ; in this 
case we have a free choice and take the last row for 

1am . The Boolean function 1k of table 1 is 
calculated by (7). 
 
Table 1: Primary implementation matrix A  

x1 x2 y1 y2 y3 y4 y5 y6 y7  D k1
0 0 0 0 0 1 1 1 1  1 1 
0 1 0 1 1 0 0 0 1 ⇒ 1 ⇒ 1 
1 0 1 0 1 0 1 1 0  1 1 
1 1 0 0 0 1 0 1 1  1 1 

             

am1 am2 am3 am4 am5 am6 am7 am8 am9    
1 1 0 0 0 1 0 1 1    

 
Using formula (8) and the vectors 1k  and 1am  we 
calculate the new matrix A  in table 2, whereby the 
values of the last row of matrix became zero. 
In the next cycles, the same steps are repeated. We 
selected the rows am  in the order of 2, 1 and 3. 
 
Table 2: Matrix A after the first step of training 

x1 x2 y1 y2 y3 y4 y5 y6 y7  D k2

1 1 0 0 0 0 1 0 0  1  1
1 0 0 1 1 1 0 1 0 ⇒ 1 ⇒ 1
0 1 1 0 1 1 1 0 1  1  1
0 0 0 0 0 0 0 0 0  0  0

             

am1 am2 am3 am4 am5 am6 am7 am8 am9    
1 0 0 1 1 1 0 1 0    

 
Table 3: Matrix A after the step 2 of training 

x1 x2 y1 y2 y3 y4 y5 y6 y7  D k3

0 1 0 1 1 1 1 1 0  1  1
0 0 0 0 0 0 0 0 0 ⇒ 0 ⇒ 0
1 1 1 1 0 0 1 1 1  1  1
0 0 0 0 0 0 0 0 0  0  0

             

am1 am2 am3 am4 am5 am6 am7 am8 am9    
0 1 0 1 1 1 1 1 0    

Table 4: Matrix A after the step 3 of training 
x1 x2 y1 y2 y3 y4 y5 y6 y7 D k4
0 0 0 0 0 0 0 0 0  0  0
0 0 0 0 0 0 0 0 0 ⇒ 0 ⇒ 0
1 0 1 0 1 1 0 0 1  1  1
0 0 0 0 0 0 0 0 0  0  0
             

am1 am2 am3 am4 am5 am6 am7 am8 am9  
1 0 1 0 1 1 0 0 1  

 
Table 5: Matrix A after the training 

x1 x2 y1 y2 y3 y4 y5 y6 y7  D
0 0 0 0 0 0 0 0 0  0 
0 0 0 0 0 0 0 0 0 ⇒ 0 
0 0 0 0 0 0 0 0 0  0 
0 0 0 0 0 0 0 0 0  0 

 

At the end of the fourth cycle is 0=D . Therefore 
the computation stops. It means that artificial 
neural network is learned and ready to run in using 
regime. The architecture of the associated Boolean 
neural network is shown in figure 3. 

 
Fig. 3. Structure of Boolean neural network to 

represent set of Boolean functions. 
 
The number of neurons on the hidden layer is 

equal to number of executed cycles in training 
algorithm. On the output layer we have 7 neurons. 
Each of them represents one Boolean functions in 
the set. 
In consequence of learning procedure, we have 
obtained the matrix K  and matrix AM . The 
columns 1 and 2 of matrix AM  are unnecessary 
because the neural network will represent in using 
regime only output values of the Boolean 
functions 721 ,...,, yyy . Thus, storage of these 
vectors is senseless.  

For the verification of using algorithm of 
neural network, calculate the output signals of the 
initial set of Boolean functions 721 ,...,, yyy  by the 
equation (11). The result is shown in table 6. 

For example the value ( ) === 1,0 213 xxy  

k1 

k2 

k3 

x1

x2 

y2 

…

k4 

y1 

y7 



 

( ) ( )( ) ( ) ( )( )⊕∧⊕∧= 21,011,0 5251 amkamk  
( ) ( )( ) ( ) ( )( ) ( )⊕∧=∧⊕∧⊕ 0141,031,0 5453 amkamk
( ) ( ) ( ) 10010101011 =⊕⊕⊕=∧⊕∧⊕∧⊕  

The calculation of ( )1,03y  is highlighted in the 
table 6 an explicitly, give in (11). 
Table 6: Reconstruction of the set of Boolean 
functions 
 K  AM  
k1 k2 k3 k4   am3 am4 am5 am6 am7 am8 am9

1 1 1 0  1 0 0 0 1 0 1 1 
1 1 0 0  2 0 1 1 1 0 1 0 
1 1 1 1  3 0 1 1 1 1 1 0 
1 0 0 0  4 1 0 1 1 0 0 1 

 
 

x1 x2 y1 y2 y3 y4 y5 y6 y7 
0 0 0 0 0 1 1 1 1 
0 1 0 1 1 0 0 0 1 
1 0 1 0 1 0 1 1 0 
1 1 0 0 0 1 0 1 1 

 

The Boolean neural network is now ready for work. 
 
 
6   Conclusion and Future Work 
Neural network models are widely used to solve 
tasks on real and rarely integer numbers. Due to 
smaller errors multi-byte data representation are 
preferred. Even the smallest computing error is 
illegal for Boolean logic. The direct using of the 
typical types of the neural networks for the tasks 
based on Boolean logic needs inadmissible size of 
memory. As result of this analysis, we found, that 
the handling of Boolean function needs special 
Boolean neural networks. 
We introduced Boolean neuron and its application 
in Boolean neural networks (BNN). In detail, we 
described the mathematic definition of the Boolean 
neuron, the structure of Boolean neural network, 
the training algorithm for such a neural network 
and the general using algorithm of BNNs. The main 
benefits of such Boolean neurons are minimizing of 
the necessary memory, the decreasing of the 
calculation time and their simple possible mapping 
to the basic elements of FPGAs. 

Suggested algorithms use common learning 
and using principles of the neural networks and 
especially non-iteration learning of feed-forward 
neural networks. Our approach can be used for 
other structures of neural network, too.  

In the future, we are going to develop the 
neural net structure for clusterization-classification 

Boolean functions on the base proposed Boolean 
neuron. Further, we continue our research for 
optimal Boolean functions presentation and 
calculation by using neural nets. Based on the 
results described in this paper we will design and 
develop а program, which used Boolean neural 
networks for compact presentation, decomposition 
and fast calculation of Boolean functions. 
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