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Abstract: - In this paper we present an unsupervised learning algorithm of neural networks
with p inputs and m outputs whose weight vectors have orthonormal constraints. In this
setting the learning algorithm can be regarded as optimization posed on the Stiefel man-
ifold, and we generalize the natural gradient method to this case based on geodesics. By
exploiting its geometric property as a quotient space: homogeneous space, the previous
result [11] for the case of the orthogonal group can be used to derive the algorithm. Rel-
evant as well as possible applications of the geometry of homogeneous spaces are also suggested.
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1 Introduction

Recently researchers in neural networks and
machine learning have been aware of the im-
portance of considering geometric structures
intrinsically hidden in data sets or the pa-
rameter sets they need to tune for solving
learning problems. In neural networks com-
munity this trend is triggered by the semi-
nal work by Amari [1] in information geome-
try and the natural gradient method. On the
other hand, researchers in control theory and
numerical analysis have been working on the
gradient and the Hamiltonian flows on mani-
folds [2], and these several communities seem
to have converged a common set of mani-
folds: homogeneous spaces. Among others,
examples we most frequently encounter are
the orthogonal group and its generalizations:

like the Stiefel, the Grassmann and the gen-
eralized flag manifold. Indeed many matrix-
factorization, component-analysis problems
can be formulated as optimization of some
cost functions on these manifolds, such as
PCA, SVD, ICA, minor component analy-
sis, multidimensional ICA, principle subspace
analysis and others.

Some researchers have developed optimiza-
tion methods on these manifolds for this
decade; we mention here a historical note
on the previous contributions to the prob-
lem, based on geodesics. Geometric proper-
ties of geodesics on homogeneous spaces have
been investigated by mathematicians since
many years ago, and yet it is relatively re-
cent they have been implemented by comput-
ers. In the early nineties Smith proposed to
use geodesics for generalizing standard iter-



ative optimization methods like the gradient
descent, the conjugate gradient, and the New-
ton method to the cases problems are posed
on general manifolds [13], however, his paper
stressed theoretical aspects related to conver-
gence and explicit forms of updating rules by
using the matrix components of the points
on the Stiefel, Grassmann manifolds had not
been proposed until the study by Edelman [3].
The present author, stimulated by Amari’s
natural gradient method, proposed a learning
algorithm via geodesic flows on the orthogo-
nal and the Stiefel manifold independently of
Edelman [11]. Though our mehod is based on
the same geodesics on the Stiefel manifold,
however, the implementation: the updating
rule, is totally different; we fully take advan-
tage of the fibration-structure of the mani-
fold, while Edelman’s one is based on a direct
solution of a variational problem(See Theo-
rem 2.1 and Corollary 2.2 in [3].) Moreover,
as far as I know, the method was applied to
ICA for the first time in [11], and it was suc-
cessfully applied to a non-negative general-
ization of ICA as well by Plumbley [12]. Also
closely related Fiori’s algorithm based on a
different framework: rigid body dynamics,
which yields comparable performance with
ours, supports the effectiveness and the nat-
uralness of our method.

Despite its importance beyond optimiza-
tion, the geometry of homogeneous spaces is
still not well known among neural networks
community, so in this paper we give a detailed
explanation of the geodesic-based learning al-
gorithm on the Stiefel manifold, which is only
briefly sketched in [11].

2 Learning via geodesic flows

In this paper we consider the geometry of the
following set of matrices,

St(p,m,R) = {W∈M(p,m) | W tW=Ip}, (1)

where M(p,m) denotes the set of p×m matri-
ces, Ip p-dimensional identity matrix, and we
assume p ≥ m1. By using the column vectors
w1,w2,...,wm∈Rp of W , the relation reduces
to m(m+1)

2 orthogonal and normalization con-
straints, (wi , wj) = δij , where δij denotes
the Kronecker delta. These equations define
a submanifold in p×m-dimensional Euclidean
space Rp×m and this manifold is termed the
Stiefel manifold; its particular case (p = m)
is called the orthogonal group O(p).

O(p) = {M ∈ M(p) | M tM = Ip} (2)

We assume column vectors wi, (i = 1 , .. , m)
represent the weight vectors of a one layer
linear neural network with p inputs, and m
outputs throughout this paper. Before de-
scribing the geometry of St(p , m , R) we re-
view here the previous result [11] needed for
getting an learning algorithm on the Stiefel
manifold. We generalized the ordinary nat-
ural gradient method, and its discretization
(3), (4) to the case where Wn is constrained
to O(p) (5), (6).

dW (t)
dt

= −µgrad f(W (t)) (3)

Wn+1 = Wn − µgrad f(Wn) (4)

Wn+1 = Wn exp(−µW t
ngrad f(Wn)) (5)

= Wn exp η
{∇f(Wn)tWn −W t

n∇f(Wn)
}

,
(6)

where η = 1
2µ is a learning constant, f

is a cost function, ∇f(Wn) denotes an or-
dinary Euclidean gradient (= ∂f(Wn)

∂(Wn)ij
), and

grad f(Wn) the natural gradient [1] with re-
spect to the bi-invariant Riemannian metric:
gO(p)(X ,Y ) = trXtY , for all X ,Y ∈ TWnO(p),

1We use p×m matrices instead of m× p ones [11]
(p ≥ m) for easily compared to the other authors’
formulation.



and all Wn ∈ O(p). Since we usually dis-
cretize (3) as (4), which corresponds to ap-
proximating the integral curve of the gradient
flow (3) by a short straight line, the approx-
imation to the integral curve by a geodesic
(5) is geometrically very appealing, because a
geodesic is a counterpart of a straight line in
Riemannian manifolds. The final expression
(6) exhibits the geodesic which emanates from
Wn pointing to −µgrad f(Wn) ∈ TWnO(p) as
a velocity vector.

3 Neural Stiefel Learning

The Stiefel manifold belongs to a family
of manifolds: called homogeneous spaces.
Since homogeneous spaces is a very use-
ful concept for analyzing various matrix-
factorization, component-analysis problems,
we present here its geometric property in de-
tail, and based on it derive a geodesic-based
neural learning algorithm on the manifold.
First we describe the quotient space structure
of the Stiefel manifold. Because the structure
is rather simple, geodesics of the Stiefel mani-
fold can be expressed by the orthogonal group
acting on them.

Note the p-dimensional orthogonal group
G = O(p) acts the Stiefel manifold as follows.

(M ,W ) 7→ MW (matrix multiplication), (7)

where M ∈ O(p), W ∈ St(p , m , R). For ev-
ery given two points W0 , Wi ∈ St(p , m ,
R), there exists an element Mi ∈ H such
that Wi = MiWo. The action of G on the
Stiefel manifold is called transitive if it sat-
isfies the above condition. Therefore starting
from a given point W0 ∈ St(p ,m ,R), we can
reach any point Wi by the G-action. This
means G-orbit G(Wo) of a given point W0 co-
incides with the whole Stiefel manifold, where
G(Wo) = {W ∈ St(p,m,R)|W = MWo, M ∈
O(p)} . Because of this surjectivity we can

represent every element of St(p , m ,R) using
some orthogonal matrix.

Correspondence: M 7→ W (8)

Actually this correspondence is many to one,
and the redundancy is described by so called
the isotropy subgroup HWo of G. HWo is a
set of matrices which does not change Wo by
the above multiplication.

H = {N ∈ O(p) | NWo = Wo} (9)

We assume hereafter

Wo =
(

Im

o(p−m,m)

)
= ( e1 ,.., em )

where ei = (0 , .. ,
i∨
1 , ..0)t ∈ Rp. (10)

Then, from the conditions Nei = ei, (i = 1 ,
.. , m), H can be represented as follows.

H =
{(

Im O(m,p−m)

O(p−m,m) U

)

where U ∈ O(p−m)
}

, (11)

where U ∈ O(p −m), and O(q,r) denotes q ×
r zero matrix. Two orthogonal matrices M1,
M2 represent the same point on the Stiefel
manifold if and only if the first m column vec-
tors coincide, in other words,

∃N ∈ H , s.t. M2 = M1N. (12)

Namely the Stiefel manifold is a quotient
space: G = O(p) divided by the ambigu-
ity arising from the isotropy subgroup H =
O(p−m). We usually express this relation as

St(p ,m ,R) ' G/H ' O(p)/O(p−m), (13)

and we hereafter use a representative orthog-
onal matrix of the above equivalence class to

describe a point on the Stiefel manifold:
∼
W =



(w1,..,wm ,v1,..,vp−m) ∈ O(p) represents W =
(w1 , .. ,wm) ∈ St(p ,m ,R), where v1 , .. , vp−m

form complementary orthonormal frames.
To get a learning algorithm via geodesic

flows we need to derive the geodesic emanat-
ing from a given point W with a specified ve-
locity, tangent vector V . The previous result
for the orthogonal group [11] is directly appli-
cable with the aid of the property of Rieman-
nian submersion, which we explain below.

Firstly the natural projection p from O(p)
to St(p , m , R) is a submersion in the sense
that the tangential map: dp|W̃ : TW̃ O(p) →
TW St(p , m , R) is surjective, where

p : O(p) → St(p , m , R)

∈ ∈

W̃ 7→ p(W̃ ) = W

(14)

Because p is a linear map, dp|W̃ is identical
with p.

p(W ) = W

(
Im

O(p−m,m)

)
= (w1,..,wm) (15)

dp|W̃ (X) = p(X) = X

(
Im

O(p−m,m)

)
, (16)

where X ∈ TW̃ O(p). For each submersion
p, we can decompose TW̃ O(p) into the verti-
cal subspace VW̃ and the horizontal subspace
HW̃ . The vertical subspace VW̃ is the sub-
set of TW̃ O(p) defined by the kernel of the
tangential linear map.

VW̃ = {v ∈ TW̃ O(p)|dp|W̃ (v) = Op×m} (17)

And we define the horizontal subspace HW̃ ,
which is orthogonal to the vertical subspace
with respect to the standard Riemannian
metric gO(p) on O(p).

HW̃ =
{
u ∈ TW̃ O(p)|gO(p) (u , v) = 0

for all v ∈ VW̃

}
(18)

Notice this decomposition corresponds to the
following orthogonal direct sum decomposi-
tion of the Lie algebra with respect to the
killing metric (identical with gO(p) ).

g = h + m, (19)

where g and h denotes the Lie algebras of
O(p), and O(p−m) respectively.

g ' {the set of p- dim . SSMs} (20)

h '
{(

O(m,m) O(m,p−m)

O(p−m,m) C

)∣∣∣∣

C:(p−m)- dim . SSM
}

(21)

m '
{(

A −Bt

B O(p−m,p−m)

)∣∣∣∣

A: m- dim . SSM, B: arbitrary
}

; (22)

tr

{(
O(m,m) O(m,p−m)

O(p−m,m) C

)t

·
(

A −Bt

B O(p−m,p−m)

)}
= 0 (23)

Since g is considered as the tangent space of
O(p) at Ip, and left multiplication of W̃ is an
isometry of O(p), VW̃ and HW̃ can be repre-
sented as follows

VW̃ =
{

W̃

(
O(m,m) O(m,p−m)

O(p−m,m) C

)∣∣∣∣

C: (p−m)- dim . SSM
}

, (24)

HW̃ =
{

W̃

(
A −Bt

B O(p−m,p−m)

)∣∣∣∣

A: m- dim . SSM, B: arbitrary
}

, (25)



where SSM denotes skew symmetric matrix.
Using the decomposition defined in a similar
fashion for a general manifold, we can define
a Riemannian submersion. A submersion f :
M → N is called a Riemannian submersion if

df |p : H|p → Tf(p)N (26)

is an isometry at every points p ∈ M , where
H|p denotes the horizontal subspace of TpM .

It is a crucial observation that the projec-
tion p from O(p) to St(p , m , R) becomes
a Riemannian submersion. Or it might be
better to say that we equip the Stiefel mani-
fold such a metric with which the projection
becomes a Riemannian submersion. Such a
metric gSt is called the normal homogeneous
metric [7]. Since p as well as dp is a many-
to-one map, we cannot get a unique inverse
image of dp|W̃ , so for a given W ∈ St(p , m ,
R) and X , Y ∈ TW St(p , m , R), take any
one of the inverse image W̃ ∈ p|−1(W ), X̃ ∈
dp−1(X), Ỹ ∈ dp−1(Y ), then decompose X̃,
Ỹ into the vertical and the horizontal compo-
nents: X̃ = X̃V +X̃H , Ỹ = ỸV +ỸH . Based on
this decomposition, the normal homogeneous
metric is defined as follows,

gSt(X , Y ) ≡ gO(p)
(X̃H , ỸH)

= tr
{

(X̃H)tỸH

}
. (27)

It is easy to show this definition does not de-
pend on the way which inverse images W̃ , X̃
are picked up. As is shown in (24), (25), every
inverse image of X is expressed as

W̃

(
A −B
B C

)

= W̃

(
O(m,m) O(m,p−m)

O(p−m,m) C

)

+ W̃

(
A −B
B O(p−m,p−m)

)
. (28)

It follows that

X̃H = W̃

(
A1 −Bt

1

B1 O(p−m,p−m)

)
, (29)

and together with the assumption p(X̃H) =
X, we get

W̃

(
A1

B1

)
= X ⇔

(
A1

B1

)
= W̃ tX. (30)

Namely once we choose an inverse image W̃
of p, the horizontal lift of the tangent vector
is uniquely determined.

gSt(X , Y )

= tr

[{
W̃

(
A1 −Bt

1

B1 O(p−m,p−m)

)}t

·
{

W̃

(
A2 −Bt

2

B2 O(p−m,p−m)

)}]

= tr

{(
A1 −Bt

1

B1 O(p−m,p−m)

)t

·

W̃ tW̃

(
A2 −Bt

2

B2 O(p−m,p−m)

)}

= tr(At
1A2 + Bt

1B
t
2 + B1B

t
2)

= tr

{(
A1

B1

)t (
A2

B2

)}
+ tr

(
B1B

t
2

)

= tr
(
XtY

)
+ tr

(
B1B

t
2

)
, (31)

where X , Y ∈ TpSt(p , m , R).
The procedure to get a geodesic which

starts from W ∈ St(p , m ,R) pointing to the
direction V ∈ TW St(p ,m ,R) goes as follows.
First embed the W to O(p) by adding (p −
m) orthogonal column vectors (v1 , .. , vp−m),

W → W̃ = (w1 , .. ,wm , v1 , .. , vp−m), (32)

then lift the velocity vector V to the horizon-
tal vector subspace of TW̃ St(p , m , R). V 7→
ṼH based on (29). Recall, by the previous
result [11], we obtained the geodesic on O(p)
starting from W̃ with ṼH as follows.

c̃(t) = W̃ exp(tW tṼH). (33)

According to a beautiful property of Rieman-
nian submersion [7], the geodesic on the ho-
mogeneous space is described by projecting



this lifted geodesic on the orthogonal group
O(p) to St(p , m , R) again. Thus we get the
final expression of the geodesic

c̃(t) = W̃ exp(tW̃ tṼH)
(

Im

O(p−m,m)

)
, (34)

and this yields the learning algorithm via
geodesic flows on the Stiefel manifold:

Wn+1

= W̃n exp(−ηW̃ t
nṼH)

(
Im

O(p−m,m)

)
;

(35)

ṼH = gradf(Wn)

=
1
2

{∇f(Wn)−Wn∇f(Wn)tWn

}
,

(36)

where f is the cost function on St(p , m , R)
to be minimized, η is a learning constant.

4 Connections of homoge-
neous spaces to other prob-
lems

The geometry of homogeneous spaces and the
orbit method give deep insights not only to
optimization but also into computer vision
and pattern recognition. We suggest some
connections here. First example is statisti-
cal theory of shape due to Kendall [8]. He
showed that a configuration of triangle land-
mark points in the plane can be regarded as a
point on homogeneous space like the complex
projective space. Secondly, in the plenary lec-
ture in ICM 2002 [9], Mumford discussed pos-
sible applications of geodesics on some homo-
geneous spaces arising from the infinite di-
mensional diffeomorphism group, to mathe-
matical theory of shape. Thirdly, Fukumizu

[6] showed some convergence property of mul-
tilayer perceptorn is heavily affected by the
geometric structure of the neural manifold.
The groups acting on the neural manifold are
not Lie groups, instead finite groups such as
the permutation group, therefore singulari-
ties appear in the manifold after devided by
the groups unlike homogeneous spaces. More-
over, in Murase’s eigenspace method [10] and
learning a manifold structure in high dimen-
sionl data sets e.g. [15], transformations can-
not be described by Lie groups as we used in
this paper, and yet the manner they try to
grasp a set of some configurations, (human
faces or words in documents or whatever) di-
vided by redundancies, as a manifold is very
close in the spirit to homogeneous spaces, and
so one of the most ambitious future plan shall
be to make a more subtle homogeneous space
theory directly applicable to represent config-
urations of various patterns in the real world.

5 Conclusion

In this paper we described a generalization of
the natural gradient method to the case pa-
rameters are constrained to the Stiefel man-
ifold based on the geometry of homogeneous
space. It is a very natural method from a
geometrical point of view and therefore has
nice properties such as equivariance when it is
applied to ICA, also several numerical simula-
tions have validated its effectiveness [11], [12].
However, from a computational complexity
point of view our method is still demanding
because of the computation of the matrix ex-
ponential. Through circumventing this dif-
ficulty, recent discretization and integration
methods of differential equations on mani-
folds may shed a new light on our method.
Other direction of future work among oth-
ers shall be to generalize the method to the
case posed on the generalized flag manifold



for a possible application to multidimensional
ICA. Historically matrix-factorization prob-
lems have been closely related to so called
the orbit method in Lie group theory, and
the generalized flag manifold plays a key role
there, however, we still have not observed a
geometric learning algorithm on the manifold
in the scientific literature.
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