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Abstract: In recent years, multiagent systems have emerged as an active subfield of Arti-

ficial Intelligence (AI). Because of the inherent complexity of MAS, there is much inter-

est in using Machine Learning (ML) techniques to help build multiagent systems. Be-

sides, in these complex systems for which acquiring a mapping from the system's inputs 

to the appropriate outputs is not simple, the need for a good paradigm for converging the 

system's functionality to the appropriate goal is apparent. A layered paradigm which is 

inspired from incremental learning model is proposed. Our approach to using ML and 

fuzzy logic as tools for developing intelligent firefighter robots involves layering increas-

ingly complex learned behaviors. In this article, we describe multiple levels of learned 

behaviors, ranging from low level environmental behaviors to more high level and com-

plex behaviors. We also verify empirically that the learned behaviors perform well in dis-

aster situations. Findings suggest that using a hybrid solution comprised from fuzzy logic 

and artificial neural networks provides us with both robustness and advanced learning 

ability. 

Keywords: Artificial neural networks, fuzzy logic, layered learning, RoboCup Rescue 

Simulation System (RCRSS), multi-agent systems. 

1 Introduction 

In recent years, multiagent systems (MAS) 

have emerged as an active subfield of Artifi-

cial Intelligence (AI). Because of the inherent 

complexity of MAS, there is much interest in 

using Machine Learning (ML) techniques to 

help deal with this complexity [2, 3]. 

   RoboCup Rescue is a particularly good do-

main for studying MAS [11]. The test-bed has 

enough complexity to be realistic; also good 

multiagent ML opportunities have brought this 

domain into a challenging area for MAS re-

searchers. 

   Our approach to acquisition of intelligent 

behaviors for fire extinguishment by a team of 

fire-fighters, is to break down the complexity 

of decision making step by step, and solving 

simpler tasks first; going for acquiring higher 

level team behaviors (strategies), after learn-

ing the low level behaviors. This idea is 

mainly inspired from Incremental Evolution

(discussed in [4]) which is a method for avoid-

ing limitation of direct evolution in difficult 

problems where the percentage of the search 

space that constitutes a solution is very small, 

and the fitness landscape very rugged. In this 

case the probability of producing fruitful indi-

viduals in the initial random population will be 

low, and evolution will not make progress; 

thus the population gets trapped in suboptimal 

regions of the fitness landscape during the 

early stages of evolution. One way to scale 

ML algorithms to tasks that are too difficult to 

evolve directly, is to begin by viewing the task 

we want to solve, as a member of a family of 



tasks, ranging from simple tasks to complex

tasks. As tasks get more difficult, the solution 

set becomes smaller, but because successive

tasks are somehow related (depending on the 

chosen abstraction level for tasks' decomposi-

tion), each task positions the population in a 

good region of the space to solve the next task. 

Eventually, if the tasks are generated properly,

the goal task can be achieved.

A layered paradigm is inspired from Incre-

mental learning model discussed above. Our

research focuses on acquiring behaviors for

tasks in which a direct mapping from inputs to

outputs is intractable. Previously, hierarchical

reinforcement learning has been studied and 

motivated by the well-known "curse of dimen-

sionality" in reinforcement learning (RL). As 

surveyed in [5], most hierarchical RL ap-

proaches use gated behaviors; meaning that 

there are a collection of behaviors mapping the 

environment states into low level actions and a 

gating function decides upon which behavior

must be executed [6, 7]. Also MAXQ algo-

rithm [8] and feudal Q-learning [9] learn at all 

levels of the hierarchy, simultaneously. A con-

stant among these approaches is that the be-

haviors and the gating function are all control 

tasks with similar inputs and actions, however

in this research the input representation of dif-

ferent layers may be learned previously in

lower levels. Moreover none of the above

methods has been implemented in a large 

scale, complex domain. More inline with this 

type of learning is the work presented by 

Stone [1]. In their approach a layered model

has been tested on RoboCup Soccer server

which is a complex domain; three abstraction

levels were observed for learning a soccer

player robot's behavior. However, in this pa-

per, introducing the abstraction level for learn-

ing robots' behavior is done in a different

manner. Namely, in our domain of discourse 

the layers may not necessarily represent robot 

behaviors. Instead we may learn the environ-

ment's behavior (model) in a layer in order to

provide more robust decision making in higher 

levels.

This paper contributes the concrete represen-

tation of layered learning in a complex multi-

agent domain, namely RoboCup Rescue Simu-

lation System. In section 2 the formalism of 

our approach is given, discussing about the

layered paradigm, formally. A brief specifica-

tion of simulated RoboCup rescue robots is 

given in section 3. Our observation of differ-

ent layers in addition to the implementation

phase is demonstrated in section 4. In section

5, the result of our proposed method is dis-

cussed; and finally in section 6, we arrive at 

conclusion and discuss directions for future 

work.

2 The Layered Learning Para-

digm

The layered learning paradigm is designed for 

domains in which a direct mapping from input 

representation to output representation is not 

tractably acquired. Our research involves lay-

ering increasingly complex behaviors of both 

the rescue robot controller and the environ-

ment itself. In this section a formalism much

like the one addressed in [1], but with neces-

sary modifications due to the complex de-

pendency of the robot controller to the envi-

ronment's behavior is presented. The major

characteristic of the paradigm is that the out-

put of each layer can have direct effect on at

least one of the subsequent layers by: (I) sup-

plying the features used for learning; and (II) 

forming the training example set.   Besides,

the output of each layer can give us more

knowledge about the contribution of previous

layers in the final goal; for example we may

realize that previous layers are polluted by 

noisy, irrelevant,..., features which lead us to 

revise the feature selection process and repeat

the layered approach again.

2.1    Formalism 

Consider the learning task of acquiring a func-

tion from among a class of functionsf

F which map a set of input features (world

state sensory information) I to a set of out-

putsO , such that based on a set of training 

examples, is most likely (of the functions

in

f

F ) to represent unseen examples and pro-

vide the appropriate output. In order to ac-

complish the task, several layers



1 2{ , ,..., }nL L L  are introduced based on the 

previous knowledge of the designer in the do-

main of context, complying with the following 

form:  

)),(,,,(
iMiiiii TMfOIL                (1) 

In which:

iI : is the set of inputs (features) selected by 

the designer; 
j

iI for indicates the
thj  feature 

acquired directly from the environment or 

previous layers outputs. Each member of  1I

( 1

jI ) is a member of I ; iO : is the set of out-

puts which may indicate the environment’s

behavior (model) or the robots appropriate 

action for the corresponding subtask of this 

layer (if any). nO O ; if : is the approxi-

mated function which maps iI into iO ; iM  : 

if  is acquired whether by means of a machine 

learning algorithm or any manual method 

which may exploit the inherent knowledge of 

the domain. The method used in this layer is 

called iM ;
iMT : In case a machine learning 

algorithm is used as iM , a set of training ex-

amples 
iMT is fed into iM . It is noteworthy 

that if  provides one or more inputs for some 

of the subsequent layers:  
j

i kI  where 

i k n  and j is an arbitrary value. In the 

following sections, each layer is described in 

detail.

3  Robocup Rescue Simulation 

Environment

RoboCup Rescue Simulation System 

(RCRSS) is designed to simulate the rescue 

mission problem in real world [10]. In this 

simulation system a communication center and 

a number of simulators are existent to simulate 

the traffic after earthquake, fire accidents as a 

result of gas leakage, road blockages, etc [10]. 

   RCRSS environment is a heterogeneous 

multi-agent system in which the agents corre-

spond to the agents involved in a real rescue 

mission. Types of agents in this domain are as 

follows: 1- Fire brigade: This agent is respon-

sible for extinguishing burning buildings. 2-

Fire station: It organizes the function of fire 

brigades. 3- Rescue, Police and their Center 

Agents: These agents are other platoon agents 

each responsible for their specific task in res-

cue simulation environment.  

   Our research goal is to arrive at effective fire 

extinguishment behavior for fire brigade 

agents. The system simulates Kobe city for 

300 cycles (each cycle corresponding to one 

minute in real world) after the earthquake 

[10]. In each cycle, the fire simulator simu-

lates fire propagation in the city by means of 

pre-computed statistical information gathered 

from the real Kobe earthquake in 1995. The 

final performance of the agents' work is as-

signed in proportion to the unburned buildings 

at the end of simulation. At each cycle each 

fire brigade agent can send one of the follow-

ing actions to the system's kernel : (I) Extin-

guish (B): for which the simulator extin-

guishes (decreases the burn of) building B in 

proportion to the maximum amount of water a 

fire brigade can supply ;  (II) Move (R): in 

which R is a route plan; the traffic simulator 

moves the fire brigade through R in the next 

cycle. By regulation, an unburned building can 

be ignited by one of its neighboring burned 

buildings. Let's call a group of neighboring 

burned buildings a fire site. In order to stop 

the spread of existent fire to other unburned 

buildings (and thus achieving a higher final 

performance), the fire fighters must try to 

extinguish the boundary buildings of each fire 

site at first (see figure 1). 

4   Implementation and Experi-

ment

In this section, we illustrate our layered ap-

proach via a full-fledged implementation in 

RCRSS [11]. Here, the high-level goal is for a 

team of fire brigade agents to achieve complex 

collaborative behavior. 

4.1    The Fire Spread Speed



First, the agents learn a basic environmental 

behavior: the fire spread speed. As mentioned 

before, the potential buildings for burning are 

the buildings which are neighbor to at least 

one of the border buildings of a fire site. We 

chose to have our agents learn this behavior by 

means of a    ML  algorithm,     because         

the   fire  simulator             behavior              in 

Figure 1. Border buildings are marked with “*” 

symbol.  Four fire brigade agents are extinguishing 

a building in border. 

in this case is so complex and thus, fine-tuning 

an approximative function by hand is difficult.   

   We provided our agents with a large number 

of training examples and used a supervised 

learning technique: neural networks ( 1M ). A 

fully connected neural network ( 1f ) with 13 

inputs and 16 hidden sigmoid units and a 

learning rate of 0.7 was trained. 1I consists of 

the following parameters gathered from the 

environment at regular time intervals: the po-

tential building B 's Total Area, 

{1 3i  : Fieryness of iB , Distance Be-

tween B  and iB , Burning Time of iB }

where iB s for 1 3i  are the three nearest 

buildings to B , respectively; and Fieryness is 

the state that specifies how much the building

is burning [11]. Also 1O = { EF(B) } where is 

EF(B)  the expected time for building B  to 

be ignited. 
1MT was constructed by sampling 

the environment's parameters in regular time 

intervals for 2000 times. The neural network 

was trained for 15000 epochs. The network 

was trained by Joone [12] (a java package for 

training and using neural networks), giving us 

the opportunity to serialize the trained neural 

network weights and biases into a file for real 

time usage during the simulation. At the first 

cycles of the simulation, each agent loads this 

file into its memory. Thus, our learning 

method is off-line in this case, providing the 

same knowledge to all the agents in their mis-

sion domain.  

  The RMSE (error) of the NN at the end of 

training was approximately 0.04TP

1
PT. Also, for 

unseen data, the trained network performs well 

by an average error of 8 cycles (for ( )EF B ),

where the range of ( )EF B is 150 cycles and 

the average is taken over 500 patterns. 

4.2    The Effect of Collaboration 

Collaboration is a key idea for successful 

teamwork in RCRSS, as well as other Multi-

agent systems. Although the effect of extin-

guishing is not defined explicitly, it may not 

be difficult for even a few fire brigades to ex-

tinguish an early fire. On the contrary, it is 

difficult for even many to extinguish a late and 

big fire. Consequently, the agents should be 

aware of the effect of collaboration in fire ex-

tinguishment for further decision making. In 

this layer ( 2L ), we aim to understand the en-

vironment's feedback to the joint effort of 

k fire brigade agents for extinguishing a spe-

cific building B . Similar to the previous layer, 

complexity leads us to using a ML algorithm, 

which is again a Neural Network ( 2M ). 2I

is comprised both from the target building's 

characteristics and the number of collaborat-

ing agents : 2I  = { B 's Total Area, B 's

Fieryness, B 's Burning Time, NP, MinDis-

tance, NCol} where NP is the number of B 's

neighboring buildings which are potential for 

igniting B , MinDistance is the minimum 

distance of such buildings to B and NCol} is 

the number of collaborating agents. Also 2O =

{ EX(B) }, where EX(B)  is equal to the ex-

pected time for the collaborating agents to ex-

tinguish building B . A fully connected neural 

TP

1
PT Inputs and outputs are normalized to [0,1]. 



network ( 2f ) with 6 input and 15 hidden sig-

moid units was trained. The learning rate was 

equal to 0.7. The neural network was provided 

with 2500 input patterns (
2MT ) gathered from 

several simulation runs. In each run, the agents 

try to extinguish a specific building as the tar-

get, taking log data at regular time intervals 

from environment for constructing
2MT . The 

NN was trained for 5000 epochs. After nearly 

4500 epochs the network's RMSE will not be 

decreased. So we finished learning the NN at 

this epoch. The NN may learn the input pat-

tern noises in case of further learning. We've 

provided the NN with training examples in 

which the NCol parameter ranges from 1 to 6. 

Our NN has the strength of generalizability 

(when NCol 6), However, if the maximum 

number N  of collaborating agents in a simu-

lation is known in advance, one may train 

N different neural networks separately (pro-

viding the 
thi  NN only training examples with 

NCOL i ) in order to have more specialized 

NNs.

    Now that the agents are provided with use-

ful primary knowledge, they must be able to 

plan an intelligent strategy for extinguishing a 

whole fire site. 

4.3    Extinguishing a Fire Site 

In order to extinguish a whole fire site, the 

agents use their learned functions (EF, EX) to 

decide upon which building is more urgent 

(prior) to extinguish in each situation. In this 

layer ( 3L ) each building B  will be assigned 

a priority value for extinguishment ( )P B

( 3O ), based on its influence on the unignited 

buildings. Regarding this priority, all the 

agents rush to the building with the maximum 

priority value by sending the Move commands 

to the system's kernel, sequentially. After all 

agents were located in a certain distance to the 

target building, they collaboratively extinguish 

this building by sending Extinguish com-

mandsTP

2
PT. After extinguishing this building, the 

agents will evaluate other buildings' priority 

value again, choosing their next target build-

ing for extinguishment. The agents will repeat 

this process until no burning building remains 

in the fire site.      As the parameters used for 

decision making in this layer can be noisy and 

inaccurate, a fuzzy rule-base system was used 

to evaluate the priority of a building. The de-

veloped fuzzy system uses singleton fuzzifier, 

the Larsen inference engine and the function 

left maximum defuzzifier [13]. At first, the 

fuzzy system assigns to each unburned build-

ing B , a danger value ( ( )D B ), which indi-

cates the potential damage that B can impose 

to the system's performance when ignited. Due 

to our observations, the much area a building 

has, the later the fire brigades can extinguish it 

(causing lower performance).  Consequently, 

( )D B is in direct proportion to B 's total area. 

On the other hand, dangerousness (potential 

imposing damage) of an unburned building 

depends on its expected time for ignition; 

namely the sooner a building is ignited, the 

more damage it will impose to the system's 

performance, in long run. The system uses 

these two linguistic variables ( 3I ) for deter-

mining ( )D B  as a crisp value between 0 and 

100. The membership function of EF(B), B 's

area and ( )D B  in High, Average and Low 

sets are depicted in figure 2; also the corre-

sponding values for the labels are given in fig-

ure 3. The knowledge base of the fuzzy system 

consists of 9 fuzzy rules. Regarding figure 3, 

for each of the 9 membership status of the lin-

guistic variables in the sets, a rule is gener-

ated. For example, the entry in the first row 

and third column of dangerous table in figure 

3 corresponds to the following rule:  

if EF(B) is LOW and B 's Total Area is HIGH

then  D(B) is HIGH 

TP

2
PT In our simulation, the agents work together at all 

the times. 



Now that ( )D B  is evaluated for each un-

burned building, the agents should determine 

the most urgent (burning) building for extin-

guishment. 

Figure 2. The general Member function dia-

grams for all linguistic variables’ fuzzifiers. 

For this purpose, another fuzzy system is used 

for evaluating the priority of each burning 

building B  ( ( )P B ) for extinguishment. 

( )P B  is evaluated based on three parameters: 

(1) EX(B): The more time extinguishing 

building B takes, the less prior is B for ex-

tinguishment, due to the agents' time loss for 

extinguishing this building. (2) The maximum 

value of ( )D B  among B 's neighbors 

( max( ( ))D B ) (3) The distance between B

and its most dangerous neighbor building 

( ( )Dis B ).The second fuzzy system's con-

figuration is much like the first one. The 

membership functions of max( ( ))D B  and 

( )Dis B  are the same as previous functions 

(Figure 2). The corresponding values for la-

bels are given in figure 3. The only difference 

is ( )EX B , for which only two labels (HIGH, 

LOW) are used. The knowledge base of the 

fuzzy system is constructed like the previous 

system regarding figure 3 (based

Figure 3. The labels' corresponding value used in fuzzy inference (left), corresponding table for 

evaluating dangerousness (middle), corresponding table for evaluating priority (right). 

on max( ( ))D B , ( )Dis B ), except for the 

dashed entries. For these entries the follow-

ing rules were used: 

(i)  if Dis(B) is LOW and D(B) is LOW and 

EX(B) is LOW then P(B) is AVERAGE

(ii) if Dis(B) is  LOW and D(B) is LOW and

EX(B) is HIGH then  P(B) is LOW

    These rules distinguish the problem features 

at entry (1, 1) for the EX(B) variable. The 

same pattern is used for the other two dashed 

entriesTP

3
PT. Finally a crisp value for ( )P B  is 

TP

3
PT Entries (3, 2) and (2, 3). 

driven from the fuzzy system. Now the fire 

brigade agents choose the building with 

maximum priority as their next target. 

5    Results 

In order to evaluate the proposed method, the 

developed team of fire brigade agents was 

tested several times with different configura-

tions of the city. In the previous work [14], 

another "state of the art" approach was pre-

sented, in which the fire brigade agents extin-

guish the fire site by dividing it into several 

sectors (assuming the fire site as a circle) and 



select the sectors to extinguish, based on a cost 

function implemented in "Eternity" rescue 

simulation team. The agents will extinguish all 

of the buildings in one sector before going to

the next sector; also, the most prior buildings

for extinguishment are found with "state of the 

art" algorithms not including machine learned 

components. The team has won the 4th place

in the 2003 International RoboCup rescue 

simulation league and won the championship

later in CIS2003 competitions. In figure 4, our

proposed method's performance is compared

with Eternity's performance based on the 

initial size of the fire site. The comparison was

done for two configurations. In the first con-

figuration the city does not have any road 

blockage; but in the second, the city is simu-

lated with road blockages generated by

RCRSS GIS [11]. The results show the aver-

age performance of these two methods on the 

specified initial city map. The performance is

evaluated regarding
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Figure 4. Performance comparison between the proposed method and Eternity's approach. In the first con-

figuration the city is simulated with no road blockage (left), however, the second configuration considers

road blockages (right).

RoboCup 2003 regulations: 

Performance  = 

0

B

B

where  is the total area of buildings and 

 is the area of the unburned buildings at 

the end of the experiment.

0B

B

The results show that in the first configu-

ration, our method works better than Eter-

nity's approach for nearly all of the tested 

values as the initial fire site size. As the ini-

tial size of the fire site increases, Eternity's

performance gets closer to our method's per-

formance. This is due to the fact that for lar-

ger fire sites, the agents’ movement cost be-

tween the site's buildings increases, which

causes lower performance in the proposed 

method. However, in Eternity's approach the

agents may not move to the next sector of 

the fire site, unless they extinguish the cur-

rent sector's buildings; thus theagents will 

not pay much for movement costs.

    In the second configuration, however there

exist road blockages in the city which will 

cause severe movement cost for agents. As it 

is clear in the diagram, our proposed method’s

performance is better for fire sites with initial

size less than 37, however, as the fire site

initial size increases, Eternity’s performance

becomes better. This is because the road 

blockages in the second configuration cause 

more movement cost in comparison to the first

one; thus Eternity has the opportunity to

achieve better performance in large fire sites. 

As the fire site initial size decreases, our

proposed method performs better due to less 

movement cost.

6    Conclusion and Future Work 



This paper has presented a layered paradigm 

for acquiring a function which tries to maxi-

mize the fire brigade agents' performance, and 

illustrated it with a fully-implemented applica-

tion in RoboCup Rescue Simulation System 

(RCRSS) as a challenging and complex multi-

agent control problem. Moreover, the results 

showed that using the layered paradigm for 

solving such complex task lead us to signifi-

cant improvement in the simulated robots 

performance. It is noteworthy that using this 

paradigm gives us the opportunity of directly 

combining different ML algorithms within a 

hierarchically decomposed task representation; 

thus one may exploit both the robustness of 

Fuzzy logic algorithms beside the strong 

learning capability of neural networks. In 

order to find out whether the proposed model 

is suitable for other domains, applying it to 

other control problems is necessary. Based on 

the acquired results, there’s a strong possibil-

ity that applying the proposed method to other 

domains may bring about good performance 

improvements.  Important directions for future 

work are to: (I) Design, revise and develop 

further layers in this domain; and (II) applying 

this paradigm to other complex domains. 

    For instance, it would be beneficial to intro-

duce another layer above the previous learned 

layers, which is responsible for dividing the 

fire brigade agents among different sites 

(when several sites exist). This will introduce 

higher level of cooperation for the agents.   

The findings lend support to the conclusion 

that layered learning paradigm's power is 

derived from the concept of simultaneously 

using different ML algorithms in a hierarchi-

cally task representation. 
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