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Abstract: Squirrel-cage induction motor (IM) is the most frequently used electric machine in modern controlled 
electromotor drives. In this paper is analyzed IM sensorless vector control system based on MRAS (Model Reference 
Adaptive System) theory. It is especially important get knowledge of the IM rotor time constant incorporated into 
observer (Fig. 1.). In this constant is incorporated IM mutual inductance Lm. The characteristic of the observed IM is 
varying of mutual inductance Lm at lower frequency of supply voltage due to saturation effect in iron. In this paper 
accuracy of the mutual inductance Lm in the observer of induction motor vector control is verified by using feedforward 
static four layer artificial neural network (ANN).  
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1 Introduction 
In induction motor vector control systems is widely 
researched rotor speed estimation using measured stator 
currents and voltages. However, most of proposed 
sensorless vector control systems have problem based on 
IM parameter changes due to saturation in iron and 
thermal changes of stator and rotor resistance.  
In this paper is analyzed IM sensorless vector control 
system based on MRAS theory. This control system is 
based on the fact that rotor flux vector can be estimated 
in two ways: using voltage and current model [3]. The 
minimization of the difference between value and angle 
of that two flux vectors is achieved by the adaptive 
control theory.  
There are in reference [6] a review of existing IM 
estimation techniques that are based on online and 
offline parameter estimation techniques. IM inductances 
estimation is based on a-priori knowledge of the 
magnetizing curve or without it. If IM inductances are 
estimated using magnetizing curve then that estimation 
technique satisfies sufficient good in steady state as well 
as in transient state.  Inductance estimation techniques 
that do not require magnetizing curve are sufficiently 
good in steady state, while during transient show some 
limitations [6]. This paper is based on knowledge of the 
magnetizing curve, and calculation method of saturation 
in iron is verified by measurement [4]. 
Analyzed induction motor is pervious to the saturation 
impact of the main magnetic circuit at the lower supply 
frequencies [4]. The mutual inductance as a parameter is 
incorporated into observer of rotor flux vector and rotor 

speed (in the next text observer only) (Fig. 1.). Changes 
of mutual inductance value due to saturation in iron 
strongly depend on quality of rotor speed control and 
system stability. Multilayer static ANN is incorporated 
in control system for verification of mutual inductance 
accuracy that there is as a parameter in observer. This 
ANN is based on using files being accommodated by  
calculated components of currents and voltages vectors 
taking into account main magnetic circuit saturation. The 
trained neural network, in this way, is sensitive to 
estimation error of mutual inductance that is present in 
observer as an important parameter. This sensitivity is 
noticed in difference between actual rotor speed and 
ANN estimated speed. By changing different values of 
mutual inductance in observer of vector control system 
could be concluded about accuracy of their selection.  
That method of mutual inductance choice is not 
mentioned in [6].  
 
 
2 Rotor speed estimation in vector control 
system - MRAS 
The analyzed vector control system shown in Fig. 1 is 
based on voltage model [3]:  
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and current model: 
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The input values in these equations are besides IM 
parameters also stator voltage vector su , stator current 
vector si  and observer gain 1/Tc. The used signs 
indicate: „c” – current model, „v” – voltage model, „*”- 
reference value, „∧”- estimated value. 
Rotor flux vector in d,q reference frame in observed 
vector control system is described by three vectors: rotor 
flux vector estimated using voltage model v

rψ , rotor flux 
vector estimated using current model c

rψ  and actual 
rotor flux vector rψ . Rotor flux vector rψ  resulting 
from simulation of vector controlled induction motor 
using Matlab package [5]. The base parameters of the 
simulated induction motor are: Pn = 1,5 [kW] (rated 
power), Mn=10,5 [Nm] (rated torque), nn=1391 [r/min] 
(rated rotor speed), Lm=0,4058 [H] (unsaturated value of 
mutual inductance), Lb=0,1838 [H] (basic inductance).  
d axis of the d,q reference frame is aligned to the rotor 
flux vector estimated by current model (Eq. (3)). In 
reference [3] is shown that in that situation rotor flux 
vectors being estimated by current model c

rψ  and 
voltage model v

rψ  are equal to actual rotor flux vector 

rψ  at steady state. Under this condition it is possible to 
estimate the rotor speed by equation [1]:  
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which presents PI controller with rotor flux component 
v
rqψ . 

Rotor flux and speed estimation in observer (Fig. 1.) is 
based on well know (measured or calculated) stator 
voltage and current vectors (Eq. (1)-(4)).  
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Figure 1. Sensorless vector control system 
 
The researches were shown that saturation of mutual 
inductance Lm can strongly influence to the validity of 
rotor speed estimation. The observed IM has significant 
saturation effect in iron. Unsaturated value of mutual 
inductance Lm in analyzed observer (then mutual 

inductance Lm estimation error is about 200%, certainly 
taking into account saturation in iron) results with wrong 
rotor speed estimation, and system becomes unstable. 
Otherwise, if the estimation of mutual inductance is 
better, then the control system will be stable.  It was 
shown that if estimation error of mutual inductance is 
less than 5 % then actual rotor speed ω and rotor speed 
estimated by observer ω̂  can satisfactory coincide. This 
fact can be assigned to mould of PI rotor speed 
controller that always minimizes difference between 
reference rotor speed and estimated rotor speed.  If that 
relative estimation error of mutual inductance becomes 
higher then the control system becomes useless. To 
reach a solution for estimation of the mutual inductance 
value Lm in control system is introduced an ANN. The 
ANN was trained with a goal to estimate rotor speed 
taking into account saturation effect in iron according to 
the reference [4]. The method described in reference [4], 
is not possible directly implement, in this research stage, 
for on line work because it contains more logical if-then 
statements and branch statements. For IM rotor speed 
estimation in this paper is proposed four layer 
feedforward static ANN which structure is 8-9-7-1 (8 
neurons in first hidden layer, 9 neurons in second hidden 
layer, 7 neurons in third hidden layer and one neuron in 
output layer) [1,5]. The activation function in hidden 
layers is tansigmoid function, and in output layer is a 
linear function. The selected ANN in this way was 
obtained by trial and error procedure [1]. At 8 first 
hidden neurons is connected 8 input signals (components 
of IM stator currents and voltages all expressed in the 
stationary α,β reference frame in kth and (k-1)th 
simulation step; )(kisα , )( 1kis −α , )(kisβ , )( 1kis −β , 

)(kusα , )( 1kus −α , )(kusβ , )( 1kus −β ). The ANN 
output value is rotor speed in kth simulation step )(kω . 
Topology of the proposed ANN is shown in Fig. 2. 
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Figure 2. Topology of the 8-9-7-1 ANN for IM rotor 
speed estimation 
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Neural network works in any simulation step parallel 
with vector control system and ANN is independent 
about it.  
 
 
3 ANN training and testing 
ANN proposed in this paper was trained with the target 
of rotor speed estimation in the lower rotor speed region 
(lower supply voltages frequencies). In this region, for 
observed IM operating modes, saturation of main 
magnetic flux is important. ANN is trained with mutual 
inductance estimated without error in an equivalent way 
as in references [3, 4]. The batch training is performed 
by using backpropagation algorithm described in [2]. For 
training process where chosen four reference rotor speed 
values: 020,* =ω  [p.u.], 030,* =ω  [p.u.], 080,* =ω  
[p.u.], 120,* =ω  [p.u.]. These rotor speed reference 
values cover region of stator voltage supply frequencies 
from 1 [Hz] to 10 [Hz] (rotor speed region from 0,02ωn 
to 0,2ωn, ωn-nominal rotor speed value). For each of 
mentioned reference rotor speed values active step load 
and step unload was applied (Fig. 3.). In order to achieve 
rapider static torque-speed characteristic rotor flux has 
constant value rnr 21 Ψ=Ψ , . This value is set indirectly 
by d component of stator current *

dsi  (Fig. 1.).  
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Figure 3. Time step load torques  

 
Thus, four files were given containing input-output data 
for ANN batch training. The ANN training using Matlab 
package (Neural Network Toolbox) and with PC 1,3 
[GHz] computer processor continues about 11 hours, and 
mean square error in 500th training epochs is 5⋅10-6. 
Checking the validity of ANN rotor speed estimation is 
realized by comparison ANN estimated speed with 
actual rotor speed for four above-mentioned IM 
operating modes. Actual rotor speed and ANN estimated 
rotor speed for rotor speed reference value 030,* =ω  
[p.u.] by step load torques (Fig. 3.) are shown in Fig. 4.  
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Figure 4. Actual rotor speed and ANN estimated rotor 
speed by step load torques; 030,* =ω  [p.u.]  
Actual rotor speed is practically in agreement with the 
estimated speed (Fig. 4.). The similar results are given 
for rotor speed reference values 020,* =ω  [p.u.], 

080,* =ω  [p.u.] and 120,* =ω  [p.u.]. This good 
correspondence of actual and estimated rotor speed is 
expected since ANN was trained by four mentioned 
operating modes. It can be said that the ANN was 
,,seen’’ set of input-output data, and consequently gives 
expected good results.  
For ANN testing is usually utilized so called test files 
with data at the ANN was not as an input values, i. e. 
data ANN has not ,,seen’’ never before. For the ANN 
testing is selected operating mode with rotor speed 
reference 060,* =ω  [p.u.] by step load torque from  
Mt1=0 to Mt2=Mtn=0,65 [p.u.] (nominal motor torque). 
Actual and estimated rotor speeds are shown in Fig. 5.  
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Figure 5. Actual and estimated IM rotor speeds: 

060,* =ω  [p.u.], Mt1=0,  Mt2=0,65 [p.u.], mL̂ = Lm  
 
It is shown in Fig. 5. that actual rotor speed is in 
agreement with ANN estimated rotor speed; during 
transient  state (t<0,5 [s]) difference is something higher 
than in steady state (t>0,5 [s]). The mean value of 
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estimated rotor speed in steady state is 0,0594 [p.u.], and 
this is a tolerance 1 % from actual rotor speed. 
From the theory of mathematical statistic is well known 
that mean value only do not describes in sufficient detail 
estimation of some values. It is necessary know standard 
deviation of an estimated value in steady state. 
Physically, it stands dissipation of samples around their 
mean values. It is calculated by equation [5]: 
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where: n – number of analyzed samples of ANN 
estimated rotor speed (in observed case n=4000), )(kω  – 
ANN estimated rotor speed  in kth simulation sampled 
step, and ω  is mean value of the ANN estimated rotor 
speed at steady state. In the observed case standard 
deviation is 00190,=σ .  
Hence, it can be concluded on the base of mean value 
and standard deviation that the ANN in observed case 
very well estimates actual rotor speed. It is necessary 
again to notice that components of stator current and 
stator supply voltage in this operating mode be not 
including in training files.  
The analyzed ANN is possible verify at rotor speeds that 
are not included in rotor speed region from 0,02 [p.u.] to 
0,12 [p.u.]. The actual and estimated rotor speed are 
shown in Fig. 6. for rotor speed reference value  

20,* =ω  [p.u.], by step load torque from Mt1=0 to 
Mt2=0,3 [p.u.]. 
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Figure 6. Actual and estimated IM rotor speed: 20,* =ω  
[p.u.], Mt1=0, Mt2=0,3 [p.u.], mL̂ = Lm  
 
It is shown in Fig. 6 that mean value of actual rotor 
speed is practically in agreement with the mean value of 
estimated rotor speed. In the steady state mean value of 
the rotor speed is 0,2027 [p.u.]. This means that relative 
error is 1,35 %. Standard deviation is σ =0,0078. In this 
case relative error and standard deviation are some 
higher than in operating mode shown in Fig. 5. 

However, ANN estimated rotor speed could be reputed 
in this case as satisfactory good.   
 
 
4 ANN verification of mutual inductance 
estimation accuracy  
In reference [3] is demonstrated that rotor speed 
estimation accuracy by so called rotor flux and rotor 
speed observer depend about estimation accuracy of 
mutual inductance Lm. As a benchmark of validity of 
mutual inductance estimation in this paper is proposed 
ANN estimation. In order to show ANN application for 
this validity is selected operating mode with step load 
torques shown in Fig. 3. The response shown in Fig. 4 is 
accomplished with mutual inductance estimated without 
error. If mutual inductance estimation error is wittingly 
chosen at e. q. 5,2 % in steady state operating mode 
(actual Lm=1,2963 [p.u.], chosen 36351Lm ,ˆ =  [p.u.]) 
then Fig. 7 show actual rotor speed, rotor speed 
estimated by observer and rotor speed estimated by 
ANN.  
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Figure 7. Actual rotor speed, rotor speed estimated by 
observer and ANN estimated speed; 060,* =ω  [p.u.], 
Mt1=0, Mt2=0,65 [p.u.] (actual Lm=1,2963 [p.u.], 
chosen 36351Lm ,ˆ =  [p.u.]) 
 
In the steady state operating mode (Fig. 7) by mutual 
inductance estimation error of 5,2 %, the difference of 
actual rotor speed and rotor speed estimated by observer 
is 3,2 %, as could be satisfactory result, because in IM 
control system that error is difficult perceive. However, 
proposed ANN gives mean estimated rotor speed in 
steady state of 0,0541, with error of 9,8 %. Thereat, 
standard deviation is σ = 0,0027.  
By the rotor reference speed of 070,* =ω  [p.u.] and step 
load torque from Mt1=0 to Mt=0,3 [p.u.] with mutual 
inductance estimation error of 7,3% ( 33691Lm ,ˆ =  
[p.u.]) and without error ( mL̂ = Lm = 1,2462 [p.u.]) actual 
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and estimated rotor speed are shown in Fig. 8. It is 
shown in Fig. 8 that actual rotor speed is in agreement 
with the rotor speed estimated by observer in steady state 
mode, even at remarkable mutual inductance estimation 
error. This effect can be assigned to rotor speed feedback 
that by PI rotor speed controller minimizes the 
difference between rotor speed reference value and rotor 
speed estimated by observer.  However, the mean value 
of ANN estimated rotor speed in steady state in this case 
is 0,0678 (σ=0,002). This is relative error of 3,1%. That 
relative error, although small, suggest that chosen mutual 
inductance mL̂  is not correct. If mutual inductance is 
estimated without error then the mean value of ANN 
estimated rotor speed in steady state is 0,0711 (Fig. 8 b)) 
(σ=0,0016), which is relative error of 1,6%. 
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Figure 8. Actual rotor speed, rotor speed estimated by 
observer and ANN estimated rotor speed; 070,* =ω  
[p.u.], Mt1=0, Mt2=0,3 [p.u.] a) 33691Lm ,ˆ =  [p.u.] and 
b) mL̂ = Lm = 1,2462 [p.u.] 
 
So, it can be concluded that ANN is more sensible to 
mutual inductance values than analyzed observer. If 

observer and ANN work parallel, then ANN can be 
utilized for validity of mutual inductance choice.  
 
 
5 Conclusion 
The analyzed vector control system is based on rotor 
speed estimation by solving an error in q- component of 
rotor flux. Estimation of rotor flux vector and rotor 
speed (rotor speed estimated by observer) strongly 
depend about observer gain 1/Tc and about accuracy of 
mutual inductance estimation mL̂ .  
As a benchmark of validity of mutual inductance 
estimation in this paper is proposed ANN estimation.      
That ANN works parallel with the observer and the 
ANN is independent about it. This ANN was trained 
using files accommodating calculated components of 
currents and voltages vectors taking into account main 
magnetic circuit saturation. If the estimation error of 
mutual inductance is small then actual rotor speed is 
practically in agreement with rotor speed estimated by 
observer. If these errors become relatively higher then 
the differences between actual rotor speed and ANN 
estimated speed become detectable higher. It can be 
concluded that ANN is more sensible in the open-loop 
for mutual inductance variations than the analyzed 
observer in the close-loop. If the ANN and observer 
work parallel, then the ANN can be employed for 
validation of mutual inductance estimation in IM vector 
control system.  
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