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Abstract:- This work presents the modeling,
stability and regulation problem of fuzzy rule-
based systems, where a fuzzy rule is a rule which
describes the fuzzy relation between two propo-
sitions representing real-world systems. A Petri
net approach based on place-transition Petri nets
and its generalization to colored Petri nets, is
proposed for handling fuzziness in system mod-
eling. This generalization allows to treat fuzzy
rules with a large number of fuzzy variables.
Then, stability analysis and regulation design
techniques employing Lyapunov methods are ap-
plied.
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1 Introduction

A model is a representation, often in mathemat-
ical terms, of what are felt to be the impor-
tant features of the system under study. By the
manipulation of the representation, it is hoped
that new information about the modeled sys-
tem can be obtained without the danger, cost,
or inconvenience and difficulty of manipulating
The advent of digital
computers and its applications in the world, has

the real system itself.

opened the necessity of developing new analysis
and synthesis methodologies. In the last years,
many knowledge representation methods, suit-
able for processing by computers, have been pro-
posed such as fuzzy production rules [2], fuzzy
Petri nets [3], generalized fuzzy Petri nets [4],
etc. This paper, discusses an alternative model-
ing methodology based on Petri nets, where the
fuzzy variables are represented by the places of
the Petri net. Place-transition Petri nets (or just

Petri nets) are utilized when the number of fuzzy
variables is small. However, in case of having to
deal with a large set of fuzzy variables the place-
transition Petri net model becomes too big to be
used. This inconvenience, is overcome via col-
ored Petri nets. Next, the dynamic behavior is
taken into account thanks to Lyapunov meth-
ods. The paper is organized as follows. Section
1, presents the problem to be solved as well as the
methodology used. Section 2, talks about stabil-
ity theory for difference equations. In section 3
and 4, the stability, stabilization and/or regula-
tion theory based on vector Lyapunov functions
and comparison principles for systems modeled
with place-transition and colored Petri nets re-
spectively is recalled. In section 5, the previ-
ously defined concepts are illustrated by means
of a simple example. Finally, some concluding
remarks are given.

2 Stability of Difference Equations [1,5]
NOTATION: N = {0,1,2,..}, N/} =
{no, no+1,...,no+k,..}, no >0, 2 ={..—
2,-1,0,1,2,..}, R4+ =[0,00). Given z,y € R",
we usually denote the relation “<” to mean com-
ponentwise inequalities with the same relation,
ie., z < y is equivalent to z; < y;,Vi. A function
f(n,z), f: N, x R" — R" is called nondecreas-
ing in z if given z,y € R" such that > y and
n € Nt then, f(n,z) > f(n,y).

Consider systems of first ordinary difference
equations given by

z(n+1) = fln,z(n)], z(no) = zo, n € N, (1)

where n € N} | z(n) € R and f: N}, x R* —
R" is continuous in z(n).

Definition 1 The n wvector walued function



®(n,no,z0) is said to be a solution of (1)
if ®(no,no0,z0) = xo and ®(n + 1,no,z0) =
f(n,®(n,no,x0)) for alln € N;i,.

Definition 2 The system (1) is said to be: i).
Practically stable, if given (A, A) with0 < A < A,
then

for n > mo where e;(n,no,eq) is the vector so-
lution of (3). Let ||lzo]| < A, we claim that
lz(n,no,xz0)|| < A for n > ng. If not, there
would exist n1 > no and a solution z(n, no, zo)
such that ||z(n1)] > A and ||z(n)|| < A for
ng < n < ni. Choose eg = wv(ng,zo) then
v(n,z(n)) < e(n,no,eq) for all n > ng. (If not

o]l < A= [|z(n,no,20)|| < A, ¥n € N, , no > 0.v(n,z(n)) < e(n,no,e0) and v(n+1,2(n+1)) >

ii). Uniformly practically stable, if it is practi-
cally stable for every no > 0.

iii). Uniformly practical asymptotically stable if
in addition of being uniformly practical stable
limp—ool|z(n,no,z0)| = 0.

Definition 3 A con-
tinuous function a : [0,00) — [0,00) is said to
belong to class K if it is strictly increasing and
a(0) =0.

Consider a Lyapunov function v(n,z(n)), v :
N,TO X R"™ — Ry and define the variation of v
relative to (1) by

Av=v(n+1,z(n+ 1)) —v(n,z(n)) (2)

Then, the following result concerns the practical
stability of (1).

Theorem 1 Let v : N} x R* — R be a
continuous function in x, define the function
vo(n,z(n)) = Y0 vi(n,z(n)) such that satis-
fies the estimates

vo (n,z (n)) < a(||z]]) a,b € K
and

w(n, v(n, z(n)))

for n € N, x(n) € R™ , where w : N}, x

RE. — RP is a continuous function in the second
argument.
Assume that : g(n,e) £ e + w(n,e) is nonde-
creasing in e, 0 < XA < A are given and finally
that a(\) < b(A) is satisfied. Then, the practical
stability properties of

e(n+1) = g(n,e(n)), e(no) = 0 20,  (3)

imply the corresponding practical stability prop-
erties of system (1).

Proof. Let us suppose that e(n + 1) is prac-
tically stable for (a(X),b(A)) then, we have that
SF ren, < alA) = Y, ei(nino,en) < b(A)

e(n+1,n0,e0) = g(n,e(n)) =e(n+1,n0,e0) <
v(n + 1,z(n + 1)) = Av(n,z0) + v(n,z(n)) <
w(n,v(n))+v(n,z(n)) = g(n,v(n))—v(n,z(n))+
v(n,z(n)) = g(n,v(n)) < g(n,e(n)) which
is a contradiction). Hence we get that
b(A) < b(lz(n)ll) < wo(ni,z(m)) <
3P ei(ni,no,e0) < b(A), which can not hold
therefore, system (1) is practically stable. ll

Remark 1 Notice that theorem (1) also holds
for other notions of stability.

Fixing a particular form on the function w(n,e)
one obtains different kinds of stability perfor-
mance, this is summarized in the next result

Corollary 2 In Theorem (1)

i). If w(n,e) = 0 we get uniform practical sta-
bility of (1) which implies structural stability.
ii). If w(n,e) = —c(e), for c € K, we get uniform
practical asymptotic stability of (1).

3 Discrete Event Systems modeled
with Place-Transition Petri nets [5]

Definition 4 A Peiri net is a 5-tuple, PN =
{P,T,F,W, Mo} where:

P = {p1,p2,...,pbm}is a finite set of places,
T = {t1,t2,...,tn} is a finite set of transitions,
F C(PxT)U(T x P)is a set of arcs, W :
F — N; is a weight function, My: P — N is
the initial marking, PNT = & and PUT # &.
A Petri net structure without any specific initial
marking is denoted by N. A Petri net with the
given initial marking is denoted by (N, Mo). No-
tice that if W(p,t) = o (or W(t,p) = ) then,
this is often represented graphically by «, (3)
arcs from p to t (¢ to p) each with no numeric
label.
Let My(p;) denote the marking (i.e., the num-
ber of tokens) at place p; € P at time k and let
My, = [My(p1), ..., M (pm)]T denote the mark-
ing (state) of PN at time k. A transition t; € T
is said to be enabled at time k if Mg(p;) >



W (pi,t;) for all p; € P such that (pit;) € F.
It is assumed that at each time k there exists
at least one transition to fire. If a transition is
enabled then, it can fire. If an enabled transition
t; € T fires at time k then, the next marking for
p; € P is given by

Miy1(pi) = Mi(pi) + W (L5, pi) — W(pi, t5). (4)

Let A = [ai;] denote an n X m matrix of inte-
gers (the incidence matrix) where a;; = ai*j —ay;
with ajj = W(ti,p;) and a;; = W(p;,t;) . Let
ur € {0,1}" denote a firing vector where if
t; € T is fired then, its corresponding firing vec-
tor is u, = [0,...,0,1,0,...,0]7 with the one in
the j'* position in the vector and zeros every-
where else. The matrix equation (nonlinear dif-
ference equation) describing the dynamical be-
havior represented by a Petri net is:

Mk+1 = M + ATuk (5)

where if at step k, a;; < My(p;) for all p; € P
then, t; € T is enabled and if this t; € T fires
then, its corresponding firing vector uy is utilized
in the difference equation to generate the next
step. Notice that if M”can be reached from some
other marking M and, if we fire some sequence
of d transitions with corresponding firing vectors

ug, UL, ..., Ug—1 We obtain that
d—1
M':M—i—ATu7 u:Zuk. (6)
k=0

Let (N, ,d) be a metric space where d : N,}, x
N,f — Ry is defined by

d(My, M) =Y Gl Ma(pi) = Ma(pi)]; Gy, > .
i=1

and consider the matrix difference equation
which describes the dynamical behavior of the
discrete event system modeled by a Petri net (6)
then we have,

Proposition 3 Let N be a Petri net. N is uni-
form practical stable if there exists a ® strictly
positive m vector such that

Av=u"A® < 0. (7)

Moreover, N is uniform practical asymptotic sta-
bility if the following equation holds

Av=uTAdD < —c(e), for c € K.

Lemma 4 Let suppose that Proposition (8)
holds then,

Av=uTA® <0< AD < 0.

Definition 5 Let N be a Petri net. N is said
to be stabilizable if there exists a firing transition
sequence with transition count vector u such that
system (6) remains bounded.

Proposition 5 Let N be a Pelri net. N is
stabilizable if there exists a firing transition se-
quence with transition count vector u such that
the following equation holds

Av=ATu<0. (8)

Remark 2 It is important to underline that
by firing a particular u, which satisfies (8),
we restrict the coverability tree to those mark-
ings (states) that are finite. The technique
can be utilized to get some type of regulation
and/or eliminate some undesirable events
(transitions) .

4 Discrete Event Systems modeled
with Colored Petri nets [5]

Definition 6 A multi-set m, over a non-empty
set S, is a function m : S — N which we repre-
sent as a formal sum:

seS

By Sums we denote the set of all multi-sets over
tse S}
s € S iff

S. The non-negative integers {m/(s)
are the coefficients of the multi-set.

m(s) # 0.

Definition 7 Addition, scalar multiplication ,
comparison and size of multi-sets are defined in
the following way, for all mi, me, ms € Sus

and alln € N:



() mi14+mg = Zses( m1(s)+ma(s))s (addition)
(@) nxm =% _o(n*m(s))s (scalar multipli-
cation) ,(4i1) m1 # mo = Js € S : ma(s) #
ma(s) (comparison) ,(7w) mi1 < mg = Vs € S
: mi(s) < ma(s) (> and = are defined analo-
gously to <),(v) |m | =3 cgm(s) (|m]|=0
iff m = () the empty multi-set) (size). When | m |
= oo we say that m is infinite. Otherwise m is
finite. When m1 < mo we also define substrac-
tion: (vi) ma —m1 = 3 g( ma(s) — ma(s))s
(substraction).

Remark 3 Weighted-sets w over a set S (de-
noted by Sws) are defined in exactly the same
way as multi-sets except that we replace N by 7,
i.e., we allow negative coefficients. The opera-
tions for weighted-sets are similar to the opera-
tions with multi-sets. However, scalar multipli-
cation is defined for negative integers and sub-
straction is defined also for all weighted-sets.

Definition 8 A colored Petri Net is a 7-tuple,
CPN = (Q,P,T,C, A", A~ My), where:

Q is a finite set of non-empty sets, called colors,
P is the set of places, T is the set of transitions,
PNT =@ and PUT # @&,C : PUT — Q is the
color function, where €) Iis the set of finite non-
empty sets, AT(A7) : C(p) x C(t) — N is the
forward (backward) incidence matrix of P x T,
Moy , the initial marking, is a vector indexed by
the elements of P, where My(p): C(p) — N .

Remark 4 The forward and backward inci-
dence matrices, are matrices of size P x T with
coefficients in N which, consequently, define lin-
ear applications from C(t) to C(p)ms. The ini-
tial marking Mo (p) takes its values in C(p)ms.

Definition 9 A marking of CPN is a function
M defined on P, such that M(p) € C(p)ms for
allpe P.

Definition 10 A step of CPN is a function X
defined on T, such that X(t) € C(t)ms for all
teT.

Definition 11 The transition firing rule 1is
given by:

e A step X is enabled in a marking M
iff the following property holds Vp € P,
M) > > ,cr A (p,t)(X(t)) which can
also be written as M > A~ * X where x
denotes generalized matrix-multiplication.
We then say that t is enabled or firable un-
der the marking M.

e Firing a transition t leads to a new marking

M, defined by: Vp € P,

Mi(p) = M(p) + Y _[A* (p,t) — A(p.)](X (1))

teT

or in general :

My =M+[AT —A7]x X,

Remark 5 The

condition M(p) > 3, .r A (p,1)(X (1)) tells us
that the multi-set of all the colors, which are re-
moved from p when t occurs (for ollt € X ), is
required to be less than or equal to the marking of
p. It is important to mention that the general-
ized matriz-multiplication, (when it is defined),
behaves in relation to the size operation as fol-
lows:

|A1*A2‘=|A1|*‘A2‘

Definition 12 The incidence matriz of a col-
ored Petri net is defined by: A = AT — A™,
A(p,t) € C(t) — C(p)ws, where A(p,t) is a
linear mapping whose associated matrix P x T
takes values in 7.

Remark 6 When a transition t is fired with re-
spect to a color ¢ € C(t) then, for every color
cp € C(p), A(cp,ct) gives the number of colors cp
to be added to (if the number is positive) or to be
removed from (if the number is negative) place p.
Notice that if M’ can be reached from a marking
M i.e., there exists a sequence of enabled steps
whose associated transitions have been fired, then
we obtain that

M =M+ AxX. (9)

Definition 13 Let a place p € P, a non nega-
tive n € N be given then, n is an integer bound
for p iff: VM’ reachable from M: | M'(p) |<
n.Let (N, ,d) be a metric space where d : N, x
Nn+0 — Ry is defined by

d(My, M) =) Gil| (M1 (pi)(ep) — M2(pi) () ;
im1

(10)

with ¢; > 0,Vep, € C(pi) i =1,...,m and consider

equation (9), which defines a continuous function
in (N}, d).



Proposition 6 Let CPN be a colored Petri net,
CPN is uniform practical stable if there ezists a
strictly positive linear mapping ® : C(p)ws —
Uws (with U normally one of the color sets al-

ready used in CPN ) such that:

Av=|PxAx X |<0. (11)

Remark 7 The condition given by equation
(11) with strictly equality sign is equivalent to
the condition:

@*A:Of.

where 05 is the zero function. The solution of
this equation is not an easy task. However, dif-
ferent methods have been proposed, drawing heav-
ily on results from linear algebra and linear pro-
grammang.

Proposition 7 Let CPN be a colored Petri net,
CPN is stabilizable if there exists a step X such
that

Av=|AxX |<0. (12)

5 Example

Consider a heating system in some environment.
The system consists of a thermostat that con-
trols the temperature in the environment. The
thermostat has the possibility of increasing or
decreasing the temperature in the environment,
(denoted by ¢ and d respectively). The temper-
ature can take several fuzzy variables (as for ex-
ample: low, fair and high) and the objective is to
make a dynamical analysis and synthesis study
of its performance which is given in terms of the
following set of fuzzy rules.

Remark 8 For simplicity, the fuzzy rules will
just be given for the case when the temperature
takes three fuzzy variables: low, fair and high.
The extension to the general case is straight-
forward. Notice that that the temperature is
bounded by its lowest and highest levels, and that
it is not possible to exceed this bounds.

Set of fuzzy rules: if x = low and y = i then
x = fair, if ¢ = fair and y = i then © = high,
if £ = fair and y = d then x = low,if x = high
and y = d then =z = fair

5.1 The model

Case 1 (Place-transitions Petri nets). The place-
transitions model of the heating system just con-
sidering three fuzzy variables for the tempera-
ture, ( i.e., low, fair and high), is shown in Fig.1.

Fig.1

The place-transitions Petri net model has the
following specifications: pi: state of the ther-
mostat, pa: low temperature, ps: fair temper-
ature. p4: high temperature, t1: increases the
temperature from low to fair, to: increases the
temperature from fair to high, t3: decreases the
temperature from high to fair, t4: decreases the
temperature from fair to low, and initially the
temperature is in its low level i.e., Mo(p2) = 1.

Notice that the model starts growing up as more
fuzzy variables for the temperature are taken
into account, this problem is easily overcome as

it is shown in case 2.

Case 2 (Colored Petri nets). The colored Petri
net model of the heating system with a numer-
able number of fuzzy variables for the tempera-
ture, is shown in Fig.2.

R R

Fig.2

The colored Petri net model has the following
specifications:

Places and transitions: pi: state of the thermo-
stat ,po: temperature, t : increases or decreases
the temperature .



Set of colors : (Ca, Cy).

Where the places and transitions colors are:
Clp) = Co = {i,d} Cpe) = Cy =

{extremely low,very low,low, ..., high,very

high, extremely high},C(t) = (Cz x Cy)

The colored functions associated to the transi-

tions are:

f(Cz,Cy) = case of: (z = i,y = extremely

low = y = very low) or (z = i,y = very
low = y = low) or (z = d,y = very low =
y = extremely low) or...or (x = i, y = very

high = y =
y = very high = y = high) or (z = extremely

extremely high) or (r = d,

high, y = d = y = high), (taking into account
all possible logical combinations).
15(C;) = Cg, identity function, (abusing in
the notation i.e., I4(Cs, Cy) = 14(Cr) = Cx)
P.(Cy,Cy) = Cg, projection function (also
holding element by element)
Qr(Cz,Cy) = Cy, projection function
The initial marking is: Mo(p1) = 1%, Mo(p2) =
lextremely low
5.2 Stability, Stabilization and Regula-
tion Analysis

Case 1 (Place-transitions Petri nets). From the
incidence matrix of the place-transitions Petri
net, given by

-1 0 0 1
-1 0 0 1
A= 1 -1 1 -1
0 1 -1 0

picking ® = [1,1,2,2], ® > 0 we obtain A® =0
concluding stability.

Now, that stability has been achieved, we are in-
terested in designing a control law such that the
temperature will lie in the range [low, fair] start-
ing from its initial state. Setting u = [1,0,0,1]
the condition given by proposition (5) is satisfied
moreover, since the control vector u is zero for
the transitions to, t3 the temperature is regulated
to lie in the pre-specified range.

Case 2 (Colored Petri nets). From the incidence
matrix of the colored Petri net, given by

|

stability is concluded by picking @ : C(p)ws —

P.— 14 ]
Qr—fr

[]‘/VS, ([]1}(/5 = Cz), equal to:

d=[¢1 ¢2]

with ¢1 =I5 € C, and ¢2:a € C(pg)vvs — 1 €
Cs.

(Proof. Computing equation 4, one gets

Id(Id(Cm)) - Id(PT(Ca;, Cy)) = @ and
7(/1)2(f(cn:~, Cy)) + (/)Q(Qr(cx7 Cy)) = () which
proves our assertion. Hl).
Now, that stability has been achieved and as-
suming that the temperature is in its fair state,
the objective becomes to design a control law
such that the temperature will lie in the range
[fair, high]. Taking step X as:

¥ { 11t (fair, )] }
17t, (high, d)]

equation (12) is satisfied therefore, the desired
performance is achieved.
6 Conclusions
This paper solves the modeling, stability and
regulation problem of fuzzy rule-based systems
using Petri nets. The approach results simple
and concise, besides being suitable for dynamical
analysis and design techniques employing Lya-
punov methods.
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