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Abstract: Despite many promising results from the use of reinforcement learning in simulated robot worlds, its 
use in real robot worlds is relatively rare. This paper addresses challenges related to real robot worlds and 
shows how reinforcement learning combined with linear function approximation can solve many of them. 
Experiments are performed using a light-seeking robot built with the Lego Mindstorms Robotics Invention 
System. 
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1   Introduction 
Trial and error seems to be one of the main ways that 
animals learn to solve problems. The success or 
failure of a trial should help to modify behaviour in 
the "right" direction. The scientific research area 
called reinforcement learning (RL) is one of those 
studying such behaviour. RL methods have been 
successfully applied to many problems where the 
agent has to explore its environment and learn 
interactively. Depending on the current state of the 
environment and the agent, the agent has to take 
actions without a priori knowledge about how good 
or bad the action is, which may be known only much 
later when a goal is reached or when the task failed.  

RL has been used in many robotic tasks, but most 
of them have been performed in simulated 
environments. Only few results have been reported 
on the use of RL on real robots. Real-world 
applications are challenging because they involve 
noise coming from sensors, non-deterministic actions 
and changes in the environment. Real-world 
experiments are also longer than simulated ones, so 
learning must be relatively rapid and possible to 
perform without causing damage to the robot.  

Due to these requirements, most real-world 
experiments reported simplify the problem by pre-
processing sensor values. Sensor values from sonar 
and light sensors are typically continuous, but they 
are often discretized even into binary values using 
value intervals. Such discretization requires a priori 
knowledge about the task to learn and leads to a loss 
of information.    

In order to avoid discretization, we here use a 
linear function approximator together with gradient 
descent for making a robot learn how to go towards a 

light. The task is to learn the correct association 
between three sensor values, i.e. light readings in 
three directions, and five possible actions. Even 
though this task seems simple, sensor noise and other 
real-world considerations make it more complicated 
than it would be otherwise. The experimental results 
also show the influence of training parameters and 
the exploration policy used.  

After this introduction, Section 2 explains the 
learning methods used in this paper. Section 3 
presents an overview of previous work on the use of 
RL in robotics, followed by test results in Section 4 
and conclusions. 
 
 
2   Reinforcement learning principles 
One of the main domains treated by RL is Markov 
Decision Processes (MDPs). A (finite) MDP is a 
tuple M=(S,A,T,R), where: S is a finite set of states; A 
= {a1, …, ak} is a set of k ≥ 2 actions; T = [Psa(·) | s ∈  
S, a ∈  A} are the next-state transition probabilities, 
with Psa(s’) giving the probability of transitioning to 
state s’ upon taking action a in state s; and R 
specifies the reward values given in different states s 
∈  S. RL methods are based on the notion of value 
functions. Value functions are either state-values (i.e. 
value of a state) or action-values (i.e. value of taking 
an action in a given state). The value of a state s ∈  S 
can be defined formally as 
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where Vπ(s) is the state value that corresponds to the 
expected return when starting in s and following 
policy π thereafter. The factor rt+k+1 is the reward 



obtained when arriving into states st+1, st+2 etc. γk is a 
discounting factor that determines to what degree 
future rewards affect the value of state s. The 
discount factor also indicates the shortest path 
through the state space because the shorter the path, 
the less reward is discounted.  

2.2   Q-learning 
When reward is not immediate for every state 
transition, rewards somehow need to be propagated 
“backwards” through the state history. Temporal 
Difference (TD) methods [11] do this by supposing 
that temporally consecutive states should have close 
value. The main advantage of TD methods over 
many other RL methods is that they update the value 
function on every state transition, not only after 
transitions that result in direct reward. TD methods 
are currently the most used RL methods.  

Action value functions are usually denoted 
Q(s,a), where a ∈  A. In control applications, the goal 
of RL is to learn an action-value function that allows 
the agent to use a policy that is as close to optimal as 
possible. However, since the action-values are 
initially unknown, the agent first has to explore the 
environment in order to learn it.   

Q-learning is a TD algorithm that uses state-
action values rather than state values. In its simplest 
form, one-step Q-learning, action values are updated 
according to  

 
 
2.1   Exploration/exploitation trade-off ( ) ( ) ( 
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Balancing the exploration/exploitation trade-off is 
one of the most difficult problems in RL for control 
[12]. The policy π used determines the balance 
between exploring the environment and exploiting 
already found, but possibly sub-optimal solutions. 
Random search achieves maximal exploration, while 
a greedy policy gives maximal exploitation by 
always taking the action that has the highest action 
value.  

where Q(st, at) is the value of action a in state s at 
time t, α is a learning rate and rt+1 is the immediate 
reward. The max-operator signifies the greatest 
action value in state st+1 and therefore represents the 
expected future reward when following a greedy 
policy. It is important to notice that (2) is only valid 
for discrete state spaces, usually handled by storing 
Q-values in a two-dimensional lookup table. The 
general case of continuous-valued state spaces is 
treated in the next section.  

A commonly used method for balancing 
exploration and exploitation is to use ε-greedy 
exploration ([12] calls this semi-uniform distributed 
exploration), where the greedy action is selected with 
probability (1-ε) and an arbitrary action is selected 
with probability ε using a uniform probability 
distribution. This method is an undirected 
exploration method in the sense that it does not use 
any task-specific information.  

Q-learning is an off-policy method.  This signifies 
that the value function converges no matter what 
policy is used, but under the condition that the 
learning rate is sufficiently small and that all state-
action pairs continue to be updated [1].  
 
 Directed exploration methods use task-specific 

knowledge for guiding exploration. Many of these 
try to guide the exploration in such a way that the 
entire state space would be explored in order to learn 
the value function as well as possible. In real-world 
tasks this is often problematic because exhaustive 
exploration is impossible and dangerous. However, a 
technique called “optimism in the face of 
uncertainty” or “optimistic initial values” offers a 
possibility of encouraging exploration of previously 
un-encountered states mainly in the beginning of 
exploration. It can be implemented by using initial 
value function estimates that are bigger than the 
expected ones. This gives the effect that unused 
actions have bigger value estimates than used ones, 
so unused actions tend to be selected rather than 
already used actions. When all actions have been 
used a sufficient number of times, the true value 
function overrides the initial value function 
estimates. 

2.3   Generalisation 
Generalisation in RL is based on the idea that an 
action that is good in some state is probably also 
good in similar states. Various classification 
techniques have been used for identifying “similar” 
states. Some kind of artificial neural net (ANN) is 
typically used for the generalisation. ANNs can 
handle any state descriptions, not only discrete ones. 
Therefore they are well adapted for problems 
involving continuous-valued state variables.  

The simplest ANN is the linear Adaline [13], 
where neurons calculate their output value as a 
weighted sum of their input values  

∑
=

=
N

i
ijij swo

1
,  (3)

where wi,j is the weight of neuron j associated with 
the neuron’s input i, oj is the output value of neuron 
j, si is the value of input i and N is the number of 



inputs. They are trained using the Widrow-Hoff 
training rule [13] 

∆wi,j = α(tj - oj)si (4)
where tj is the corresponding “correct” or “target” 
value. α is a learning rate parameter that determines 
the step size of weight modifications. The Widrow-
Hoff update rule is a gradient descent method that 
minimizes the root mean square error (RMSE) 
between output and target values:  
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where M is the number of training examples. By 
inserting (3) into the RMSE expression and taking 
the partial derivative, it can be shown that it has only 
one optimal solution. Therefore gradient descent is 
guaranteed to converge if the learning rate is selected 
sufficiently small. The Widrow-Hoff learning rule is 
a special case of TD learning [1], which signifies that 
the Q-learning error term in (2) 
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can be used as the “target” value.  

When the back propagation rule for gradient 
descent in multi-layer ANNs was developed [8], it 
became possible to learn non-linear function 
approximations and classifications. Unfortunately, 
learning non-linear functions by gradient descent 
tends to be slow and to converge to locally optimal 
solutions. This is particularly problematic in RL 
applications, where convergence of gradient descent 
cannot always be guaranteed even for Adalines [2]. 
 
 
3   Reinforcement learning in robotics 
Due to the challenges related to real-world robotics 
applications, most experimental RL work has been 
done in completely simulated environments, e.g. [9] 
and [10], or in simulators written for simulating real 
robots, e.g. [3] and [7]. Simulators have also been 
used for initial learning before transferring the agent 
to the real robot. Real robots have been used in 
relatively few cases. One of the main reasons is the 
presence of hidden state, i.e. that it is not possible for 
the agent to completely determine its own state 
and/or that of the environment. Complete 
observability is one of the main assumptions of 
MDPs and hidden state is therefore a major challenge 
for RL methods.  

Lin [4] used three different learning tasks, 1) wall 
following, 2) going through a door and 3) docking 
into a charger. Mainly sonar sensors were used; light 
sensor readings were only used in the docking task, 
where a lamp indicated the docking position. Most 
state variables were converted into binary values. 

There were 16 possible actions, consisting in turning 
and going forward in different directions. Relatively 
large non-linear ANNs (one per action) were used for 
learning the reward function. Actions were selected 
according to Boltzmann-distributed probabilities 
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where T (called temperature) adjusts the randomness 
of action selection.  

Mahadevan [5] used a task that consisted in 
finding boxes and pushing them into corners. The 
task was decomposed into three sub-tasks 
(behaviours); 1) box finding, 2) box pushing, 3) 
unwedge from stalled states. The OBELIX robot 
used eight sonar sensors for detecting boxes, one 
infrared “bump” sensor for indicating contact with a 
box and a “stuck” indicator based on motor current. 
Sensor values were converted into 18 binary state 
values. Five actions were possible, one for going 
straight forward and four for turning right/left by 22 
or 45 degrees. Actions were selected using ε-greedy 
exploration with ε = 0.1. State generalization was 
performed using a Hamming distance-based 
technique and a clustering technique.  

Instead of learning the behaviours, Mataric [6] 
learned selecting the appropriate pre-programmed 
behaviour as a function of state. The task consisted in 
having multiple robots learn to “home” pucks, i.e. 
find pucks and take them back into a “home area”. 
Four binary state variables were used, which makes 
the state space small enough to be treated by a 
lookup-table. Five actions (behaviours) were 
possible. Untested actions in a given state were used 
if possible; otherwise the greedy action was used. 
Plain Q-learning was not able to learn the task at all, 
so the reward function was modified to use progress 
estimators to produce more immediate reward and 
guide the learning.  

What is common to these approaches is that state 
indicators are greatly pre-processed, preferably into 
binary values. Task-specific knowledge is also used 
for tuning reward functions by hand. Immediate 
reward is often necessary in order to guide the 
learning sufficiently for it to be successful. However, 
immediate reward may also lead to locally optimal 
solutions instead of solving the main task.  

In the following section, results are shown for a 
task where an agent should learn to associate three 
continuous-valued state indicators and five actions so 
that it reaches a light source as quickly as possible. 
This task resembles many of those in this section, but 
using a linear function approximator makes it 
possible to avoid discretization of state variables.   



4   Experimental results 
Experiments were performed using a “robot” built 
with the Lego Mindstorms Robotics Invention 
System (RIS). The RIS offers a cheap, standard and 
simple platform for performing real-world tests. In 
addition to Lego building blocks, it includes two 
electrical motors; two touch sensors and one light 
sensor. The main block contains a small computer 
(RCX) with connectors for motors and sensors. 
Among others, the Java programming language can 
be used for programming the RCX.  

 

Figure 1. Lego Mindstorms robot. Light sensor is at 
the top in the front, directed forwards. One touch 
sensor is installed at the front and another at the rear.  

The robot had one motor on each side; touch 
sensors in the front and in the back and a light sensor 
directed straight forward mounted in the front 
(Figure 1). Robots usually have more than one light 
sensor, which were simulated by turning the robot 
around and getting light readings from three different 
directions. One light reading was from the direction 
straight forward and the two others about 15 degrees 
left/right, obtained by letting one motor go forward 
and the other motor backward for 250 milliseconds 
and then inversing the operation. The light sensor 
reading from the forward direction after performing 
an action is directly used as the reward value, thus 
avoiding hand tuning of the reward function.   

Five actions are used, which consist in doing one 
of the following motor commands for 450 
milliseconds: 1) both motors forward, 2/3) one 
forward, other stopped, 4/5) one forward, other 
backward. Going straight forward means advancing 
about 3 cm, actions 2/3 going forward about 1 cm 
and turning about 15 degrees and actions 4/5 turning 
about 40 degrees without advancing.  

The robot starts about 110 centimetres from the 
lamp, initially directed straight towards it. Reaching 
a light value of 80 out of 100 signifies that the goal is 
reached, which means one to fifteen centimetres 
from the lamp depending on the approach direction 
and sensor noise. The lamp is on the floor level and 

gives a directed light in a half-sphere in front of it. If 
the robot hits an obstacle or drives behind the lamp, 
then it is manually put back to the start position and 
direction. The test room is an office room with noise 
due to floor reflections, walls and shelves with 
different colours etc. The robot itself is also a source 
of noise due to imprecise motor movements, battery 
charge etc. However, the light sensor is clearly the 
biggest source of noise as shown in Figure 2, where 
light sensor samples are indicated for two different 
levels of luminosity. 
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Figure 2. 150 light samples for two different light 
conditions, taken with 500 millisecond intervals. 
Average values are 22.5 and 60.0. Raw values are 
shown to the left, value distribution to the right.  

When using an ANN there is one output per 
action, where the output value corresponds to the 
action-value estimate of the corresponding action. 
With five actions and three state variables, a 5x3 
weight matrix can represent the weights (no bias 
input used here). A “hand-coded agent” with pre-
defined weights (Table 1) was used in order to prove 
that a linear approximator can solve the control task 
and as a reference for judging how good the 
performance is for learning agents. These weights 
were determined based on the principle that if the 
light value is greatest in the middle, then make the 
forward-going action have the biggest output value. 
In the same way, if the light value is greater to the 
left, then favour some left-turning action and vice 
versa for the right side.  

The hand-coded agent reached the goal after the 
10-episode average of 19.3 steps. In order to 
compare with agents using ε-greedy exploration, the 
hand-coded agent was also tested for the two values 
of ε used here, i.e. 0.1 and 0.2 (selecting a random 
action every 10 and 5 times). The 10-episode average 
for ε = 0.1 is 20.8 steps and for ε = 0.2 it is 31.1. One 
of the biggest reasons that the average episode length 
grows so much when increasing the value of ε is that 
if random actions are used close to the lamp, then the 



agent might not be able to reach the light at all 
anymore. The hand-coded agent with ε = 0.2 was 
moved back to the start position twice.  

Table 1. Hand-coded weights. One row per action, 
one column per state variable (light sensor reading). 

Action Left Middle Right 
Forward 0.1 0.8 0.1 
Left/forward 0.6 0.3 0.1 
Right/forward 0.1 0.3 0.6 
Left 0.6 0.2 0.2 
Right 0.2 0.2 0.6 

 
Learning agents used the same linear function 

approximator architecture as the hand-coded agent. 
Weights are modified by the Widrow-Hoff training 
rule (4). Experiments were performed both with 
weights initialised to small random values in the 
range [0, 0.1) and with weights having optimistic 
initial values in the range [1, 2). Such weights are 
optimistic because weight values after training 
should converge to values whose sum is close to one. 
This is because state variable values and reward 
values are all light sensor readings, so the estimated 
reward value should be close to at least one of the 
state variable values. If the RL is successful, then the 
estimated reward should even be a little bit bigger 
since the goal by definition of RL is to make the 
agent move towards states giving higher reward.  
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Figure 3. Number of steps per episode, average 
values from 5 runs. OIV indicates “optimistic initial 
values”.  

Actions were selected using ε-greedy exploration 
with ε = 0.1 and ε = 0.2. The learning rate α in 
formula (4) was 0.0001 in all experiments, which 
was determined through experimentation. Bigger 
values (such as 0.001) lead to weight oscillations, 
which make the learning fail. Since light sensor 
values range from zero to 100, it is also easy to see 
from formula (4) that weight modifications become 
too large with α values greater than 0.0001.  

Figure 3 shows the number of steps per episode as 
an average from five runs per agent. The number of 

runs was limited to five due to the long experiment 
times that are typical for real-world robot 
experiments. Despite the limited number of runs, 
some interpretations remain possible. For instance, 
using ε = 0.1 with small random initial weights gives 
very long initial episodes. Since learning increases 
the weights of the first action used, that action is 
selected all the time until other actions are tested and 
can update their weights, i.e. every ten steps as an 
average. This tends to give a policy where only one 
or two actions continue to be used for over 100 steps, 
which usually does not make the robot move closer 
to the light. However, with ε = 0.1 and small random 
initial weights, there seems to be an advantage in 
finding an optimal policy as shown by the last two 
episode averages. Using optimistic initial values 
gives an advantage with ε = 0.1, but with ε = 0.2 it 
doesn’t provide any advantage compared to the agent 
using small random initial values.  

Table 2. Statistics from five runs for different ε 
values and weight initialisation methods. “Average 3 
best” values are the average value of the three best 
episodes in Figure 3. OIV stands for “optimistic 
initial values”. 

Agent Total 
steps 

Average 
3 best 

Manual 
resets 

ε=0.1, rand. 516 21.6 15 
ε=0.2, rand. 388 27.4 13 
ε=0.1, OIV 426 24.9 16 
ε=0.2, OIV 468 30.1 16 

 
Table 2 resumes some statistics for the four 

agents. The number of total steps shows that the 
agent using ε = 0.2 and random initial weights 
performs the best. This advantage is further 
illustrated by the results obtained when taking the 
average of the three best episodes. With ε = 0.2, the 
hand-coded agent had an average episode length of 
31.1 steps, so with this ε-value both learning agents 
perform better. The total number of manual resets to 
the start position for all episodes and runs with the 
agent also indicates that the agent with ε = 0.2 learns 
a “harmless” policy the quickest. With ε = 0.1, the 
hand-coded agent had an average episode length of 
20.8 steps, which is not achieved by neither learning 
agent using the same ε value. It should, however, be 
pointed out that the agent using random initial 
weights and ε=0.1 has a very good average 
performance for the last two episodes, 19.4 and 18.4.  

Even though only immediate reward is used, 
using reward discounting might still somehow be 
useful. Taking into account already known next-state 
action value estimates might make learning faster by 



using already learned next-state action values. Q-
learning was used with three different discount rates, 
0.0 (no discounting), 0.2 and 0.5. ε was set to 0.2 and 
weights were initialised to small random values. As 
shown by the results in Figure 4 and Table 3, using 
discounting makes the agent perform worse. In fact, 
discounting seems to make the agent get “blocked” 
into repeatedly using the same actions in the 
beginning of exploration.  
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Figure 4. Effect of discount rate (dr) on learning. 
Weights initialized to small random values, ε=0.2. 

Table 3. Numerical statistics for different discount 
rate (γ) values. Weights initialized to small random 
values, ε=0.2.  

Agent Total steps Aver. 3 best Man. resets 
γ=0.0 388 27.4 13 
γ=0.2 498 29.9 29 
γ=0.5 479 29.1 17 

 
 
5   Conclusions 
Even though the light-seeking robot task seems 
simple, it is still in many aspects comparable with 
others performed earlier using real robots. Both the 
robot itself and the environment are sources of noise, 
which makes the learning task highly stochastic. 
Especially the use of a linear function approximator 
makes it possible to overcome or at least reduce 
these challenges that are typical in real-world tasks. 
Using a linear function approximator also makes it 
possible to use continuous-valued state variables 
directly without value discretization or scaling.  

The best learning agents outperformed a hand-
coded one, which gives an indication of the 
advantages that can be obtained by using a learning 
and adaptable control model instead of using a pre-
programmed and static one.  

Future work will attempt to solve more difficult 
tasks involving delayed reward and contradictory 
goals, e.g. reaching a light source while avoiding 
obstacles. In such tasks the importance of selecting a 
good exploration policy can be expected to further 

increase. Developing exploration policies is therefore 
a main subject of future research. 
References: 
[1] Barto, A.G., Sutton, R.S., Watkins C.J.C.H. 

(1990). Learning and Sequential Decision 
Making. In M. Gabriel and J. Moore (eds.), 
Learning and computational neuroscience : 
foundations of adaptive networks. M.I.T. Press. 

[2] Boyan, J. A., Moore, A. W. (1995). 
Generalization in Reinforcement Learning: Safely 
Approximating the Value Function. In Tesauro, 
G., Touretzky, D., Leen, T. (eds), NIPS'1994 
proc., Vol. 7. MIT Press, pp. 369-376. 

[3] Gullapalli, V. (1992). Reinforcement Learning 
and its Application to Control. (Ph.D. Thesis) 
COINS Tech. Rep. 92-10, Univ. of Mass..  

[4] Lin, L.-J. (1991). Programming robots using 
reinforcement learning and teaching. In Proc. of 
the Ninth National Conference on Artificial 
Intelligence (AAAI), pp. 781-786.  

[5] Mahadevan, S., Connell, J. (1992). Automatic 
Programming of Behavior-based Robots using 
Reinforcement Learning. Artificial Intelligence, 
Vol. 55, Nos. 2-3, 311-365.  

[6] Mataric, M.J. (1994). Reward Functions for 
Accelerated Learning. In Cohen, W. W., Hirsch, 
H. (eds.), Machine Learning: Proceedings of the 
Eleventh International Conference. Morgan-
Kaufmann, CA.  

[7] Millán, J. R., Posenato, D., Dedieu, E. (2002). 
Continuous-Action Q-Learning. Machine 
Learning, Vol. 49, 247-265.  

[8] Rumelhart, D. E., McClelland, J. L. et al. (1988). 
Parallel Distributed Processing Vol. 1. MIT 
Press, Massachusetts.  

[9] Rummery, G. A., Niranjan, M. (1994). On-Line 
Q-Learning Using Connectionist Systems. Tech. 
Rep. CUED/F-INFENG/TR 166, Cambridge 
University Engineering Department.  

[10] Sun, R., Peterson, T. (1998). Autonomous 
Learning of Sequential Tasks: Experiments and 
Analyses. IEEE Trans. on Neural Networks, Vol. 
9, No. 6, 1217-1234.  

[11] Sutton, R. S. (1988). Learning to predict by the 
method of temporal differences. Machine 
Learning, Vol. 3, 9-44. 

[12] Thrun, S.B. (1992). The role of exploration in 
learning control. In DA White & DA Sofge, 
(eds.), Handbook of Intelligent Control: Neural, 
Fuzzy and Adaptive Approaches. Van Nostrand 
Reinhold, New York.  

[13] Widrow, B., Hoff, M.E. (1960). Adaptive 
switching circuits. 1960 WESCON Convention 
record Part IV, Institute of Radio Engineers, New 
York, pp. 96-104. 


	Introduction
	Reinforcement learning principles
	Exploration/exploitation trade-off
	Q-learning
	Generalisation

	Reinforcement learning in robotics
	Experimental results
	Conclusions

