
Reinforcement Learning in a Noisy Environment: Light-seeking Robot

KARY FRÄMLING
Laboratory of Information Processing Science

Helsinki University of Technology
PL 5400, 02015 TKK

FINLAND

Abstract: Despite many promising results from the use of reinforcement learning in simulated robot worlds, its
use in real robot worlds is relatively rare. This paper addresses challenges related to real robot worlds and
shows how reinforcement learning combined with linear function approximation can solve many of them.
Experiments are performed using a light-seeking robot built with the Lego Mindstorms Robotics Invention
System.

Key-Words: - reinforcement learning, exploration strategies, light-seeking robot, linear approximation, gradient
descent

1 Introduction
Trial and error seems to be one of the main ways that
animals learn to solve problems. The success or
failure of a trial should help to modify behaviour in
the "right" direction. The scientific research area
called reinforcement learning (RL) is one of those
studying such behaviour. RL methods have been
successfully applied to many problems where the
agent has to explore its environment and learn
interactively. Depending on the current state of the
environment and the agent, the agent has to take
actions without a priori knowledge about how good
or bad the action is, which may be known only much
later when a goal is reached or when the task failed.

RL has been used in many robotic tasks, but most
of them have been performed in simulated
environments. Only few results have been reported
on the use of RL on real robots. Real-world
applications are challenging because they involve
noise coming from sensors, non-deterministic actions
and changes in the environment. Real-world
experiments are also longer than simulated ones, so
learning must be relatively rapid and possible to
perform without causing damage to the robot.

Due to these requirements, most real-world
experiments reported simplify the problem by pre-
processing sensor values. Sensor values from sonar
and light sensors are typically continuous, but they
are often discretized even into binary values using
value intervals. Such discretization requires a priori
knowledge about the task to learn and leads to a loss
of information.

In order to avoid discretization, we here use a
linear function approximator together with gradient
descent for making a robot learn how to go towards a

light. The task is to learn the correct association
between three sensor values, i.e. light readings in
three directions, and five possible actions. Even
though this task seems simple, sensor noise and other
real-world considerations make it more complicated
than it would be otherwise. The experimental results
also show the influence of training parameters and
the exploration policy used.

After this introduction, Section 2 explains the
learning methods used in this paper. Section 3
presents an overview of previous work on the use of
RL in robotics, followed by test results in Section 4
and conclusions.

2 Reinforcement learning principles
One of the main domains treated by RL is Markov
Decision Processes (MDPs). A (finite) MDP is a
tuple M=(S,A,T,R), where: S is a finite set of states; A
= {a1, …, ak} is a set of k ≥ 2 actions; T = [Psa(·) | s ∈
S, a ∈ A} are the next-state transition probabilities,
with Psa(s’) giving the probability of transitioning to
state s’ upon taking action a in state s; and R
specifies the reward values given in different states s
∈ S. RL methods are based on the notion of value
functions. Value functions are either state-values (i.e.
value of a state) or action-values (i.e. value of taking
an action in a given state). The value of a state s ∈ S
can be defined formally as

()

== ∑
∞

=
++

0
1

k
tkt

k ssrEsV γπ
π (1)

where Vπ(s) is the state value that corresponds to the
expected return when starting in s and following
policy π thereafter. The factor rt+k+1 is the reward

obtained when arriving into states st+1, st+2 etc. γk is a
discounting factor that determines to what degree
future rewards affect the value of state s. The
discount factor also indicates the shortest path
through the state space because the shorter the path,
the less reward is discounted.

2.2 Q-learning
When reward is not immediate for every state
transition, rewards somehow need to be propagated
“backwards” through the state history. Temporal
Difference (TD) methods [11] do this by supposing
that temporally consecutive states should have close
value. The main advantage of TD methods over
many other RL methods is that they update the value
function on every state transition, not only after
transitions that result in direct reward. TD methods
are currently the most used RL methods.

Action value functions are usually denoted
Q(s,a), where a ∈ A. In control applications, the goal
of RL is to learn an action-value function that allows
the agent to use a policy that is as close to optimal as
possible. However, since the action-values are
initially unknown, the agent first has to explore the
environment in order to learn it.

Q-learning is a TD algorithm that uses state-
action values rather than state values. In its simplest
form, one-step Q-learning, action values are updated
according to

2.1 Exploration/exploitation trade-off () () (

 −++← ++ ttt

a
ttttt asQasQrasQasQ ,),(max,, 11 γα)

(2)
Balancing the exploration/exploitation trade-off is
one of the most difficult problems in RL for control
[12]. The policy π used determines the balance
between exploring the environment and exploiting
already found, but possibly sub-optimal solutions.
Random search achieves maximal exploration, while
a greedy policy gives maximal exploitation by
always taking the action that has the highest action
value.

where Q(st, at) is the value of action a in state s at
time t, α is a learning rate and rt+1 is the immediate
reward. The max-operator signifies the greatest
action value in state st+1 and therefore represents the
expected future reward when following a greedy
policy. It is important to notice that (2) is only valid
for discrete state spaces, usually handled by storing
Q-values in a two-dimensional lookup table. The
general case of continuous-valued state spaces is
treated in the next section.

A commonly used method for balancing
exploration and exploitation is to use ε-greedy
exploration ([12] calls this semi-uniform distributed
exploration), where the greedy action is selected with
probability (1-ε) and an arbitrary action is selected
with probability ε using a uniform probability
distribution. This method is an undirected
exploration method in the sense that it does not use
any task-specific information.

Q-learning is an off-policy method. This signifies
that the value function converges no matter what
policy is used, but under the condition that the
learning rate is sufficiently small and that all state-
action pairs continue to be updated [1].

 Directed exploration methods use task-specific

knowledge for guiding exploration. Many of these
try to guide the exploration in such a way that the
entire state space would be explored in order to learn
the value function as well as possible. In real-world
tasks this is often problematic because exhaustive
exploration is impossible and dangerous. However, a
technique called “optimism in the face of
uncertainty” or “optimistic initial values” offers a
possibility of encouraging exploration of previously
un-encountered states mainly in the beginning of
exploration. It can be implemented by using initial
value function estimates that are bigger than the
expected ones. This gives the effect that unused
actions have bigger value estimates than used ones,
so unused actions tend to be selected rather than
already used actions. When all actions have been
used a sufficient number of times, the true value
function overrides the initial value function
estimates.

2.3 Generalisation
Generalisation in RL is based on the idea that an
action that is good in some state is probably also
good in similar states. Various classification
techniques have been used for identifying “similar”
states. Some kind of artificial neural net (ANN) is
typically used for the generalisation. ANNs can
handle any state descriptions, not only discrete ones.
Therefore they are well adapted for problems
involving continuous-valued state variables.

The simplest ANN is the linear Adaline [13],
where neurons calculate their output value as a
weighted sum of their input values

∑
=

=
N

i
ijij swo

1
, (3)

where wi,j is the weight of neuron j associated with
the neuron’s input i, oj is the output value of neuron
j, si is the value of input i and N is the number of

inputs. They are trained using the Widrow-Hoff
training rule [13]

∆wi,j = α(tj - oj)si (4)
where tj is the corresponding “correct” or “target”
value. α is a learning rate parameter that determines
the step size of weight modifications. The Widrow-
Hoff update rule is a gradient descent method that
minimizes the root mean square error (RMSE)
between output and target values:

()∑
=

−=
M

k

k
j

k
j ot

M
RMSE

1

21 (5)

where M is the number of training examples. By
inserting (3) into the RMSE expression and taking
the partial derivative, it can be shown that it has only
one optimal solution. Therefore gradient descent is
guaranteed to converge if the learning rate is selected
sufficiently small. The Widrow-Hoff learning rule is
a special case of TD learning [1], which signifies that
the Q-learning error term in (2)

),(max 11 asQr tat ++ +γ (6)
can be used as the “target” value.

When the back propagation rule for gradient
descent in multi-layer ANNs was developed [8], it
became possible to learn non-linear function
approximations and classifications. Unfortunately,
learning non-linear functions by gradient descent
tends to be slow and to converge to locally optimal
solutions. This is particularly problematic in RL
applications, where convergence of gradient descent
cannot always be guaranteed even for Adalines [2].

3 Reinforcement learning in robotics
Due to the challenges related to real-world robotics
applications, most experimental RL work has been
done in completely simulated environments, e.g. [9]
and [10], or in simulators written for simulating real
robots, e.g. [3] and [7]. Simulators have also been
used for initial learning before transferring the agent
to the real robot. Real robots have been used in
relatively few cases. One of the main reasons is the
presence of hidden state, i.e. that it is not possible for
the agent to completely determine its own state
and/or that of the environment. Complete
observability is one of the main assumptions of
MDPs and hidden state is therefore a major challenge
for RL methods.

Lin [4] used three different learning tasks, 1) wall
following, 2) going through a door and 3) docking
into a charger. Mainly sonar sensors were used; light
sensor readings were only used in the docking task,
where a lamp indicated the docking position. Most
state variables were converted into binary values.

There were 16 possible actions, consisting in turning
and going forward in different directions. Relatively
large non-linear ANNs (one per action) were used for
learning the reward function. Actions were selected
according to Boltzmann-distributed probabilities

∑=
k kiiij TasQTasQa)/),(exp(/)/),(exp()(Prob (7)

where T (called temperature) adjusts the randomness
of action selection.

Mahadevan [5] used a task that consisted in
finding boxes and pushing them into corners. The
task was decomposed into three sub-tasks
(behaviours); 1) box finding, 2) box pushing, 3)
unwedge from stalled states. The OBELIX robot
used eight sonar sensors for detecting boxes, one
infrared “bump” sensor for indicating contact with a
box and a “stuck” indicator based on motor current.
Sensor values were converted into 18 binary state
values. Five actions were possible, one for going
straight forward and four for turning right/left by 22
or 45 degrees. Actions were selected using ε-greedy
exploration with ε = 0.1. State generalization was
performed using a Hamming distance-based
technique and a clustering technique.

Instead of learning the behaviours, Mataric [6]
learned selecting the appropriate pre-programmed
behaviour as a function of state. The task consisted in
having multiple robots learn to “home” pucks, i.e.
find pucks and take them back into a “home area”.
Four binary state variables were used, which makes
the state space small enough to be treated by a
lookup-table. Five actions (behaviours) were
possible. Untested actions in a given state were used
if possible; otherwise the greedy action was used.
Plain Q-learning was not able to learn the task at all,
so the reward function was modified to use progress
estimators to produce more immediate reward and
guide the learning.

What is common to these approaches is that state
indicators are greatly pre-processed, preferably into
binary values. Task-specific knowledge is also used
for tuning reward functions by hand. Immediate
reward is often necessary in order to guide the
learning sufficiently for it to be successful. However,
immediate reward may also lead to locally optimal
solutions instead of solving the main task.

In the following section, results are shown for a
task where an agent should learn to associate three
continuous-valued state indicators and five actions so
that it reaches a light source as quickly as possible.
This task resembles many of those in this section, but
using a linear function approximator makes it
possible to avoid discretization of state variables.

4 Experimental results
Experiments were performed using a “robot” built
with the Lego Mindstorms Robotics Invention
System (RIS). The RIS offers a cheap, standard and
simple platform for performing real-world tests. In
addition to Lego building blocks, it includes two
electrical motors; two touch sensors and one light
sensor. The main block contains a small computer
(RCX) with connectors for motors and sensors.
Among others, the Java programming language can
be used for programming the RCX.

Figure 1. Lego Mindstorms robot. Light sensor is at
the top in the front, directed forwards. One touch
sensor is installed at the front and another at the rear.

The robot had one motor on each side; touch
sensors in the front and in the back and a light sensor
directed straight forward mounted in the front
(Figure 1). Robots usually have more than one light
sensor, which were simulated by turning the robot
around and getting light readings from three different
directions. One light reading was from the direction
straight forward and the two others about 15 degrees
left/right, obtained by letting one motor go forward
and the other motor backward for 250 milliseconds
and then inversing the operation. The light sensor
reading from the forward direction after performing
an action is directly used as the reward value, thus
avoiding hand tuning of the reward function.

Five actions are used, which consist in doing one
of the following motor commands for 450
milliseconds: 1) both motors forward, 2/3) one
forward, other stopped, 4/5) one forward, other
backward. Going straight forward means advancing
about 3 cm, actions 2/3 going forward about 1 cm
and turning about 15 degrees and actions 4/5 turning
about 40 degrees without advancing.

The robot starts about 110 centimetres from the
lamp, initially directed straight towards it. Reaching
a light value of 80 out of 100 signifies that the goal is
reached, which means one to fifteen centimetres
from the lamp depending on the approach direction
and sensor noise. The lamp is on the floor level and

gives a directed light in a half-sphere in front of it. If
the robot hits an obstacle or drives behind the lamp,
then it is manually put back to the start position and
direction. The test room is an office room with noise
due to floor reflections, walls and shelves with
different colours etc. The robot itself is also a source
of noise due to imprecise motor movements, battery
charge etc. However, the light sensor is clearly the
biggest source of noise as shown in Figure 2, where
light sensor samples are indicated for two different
levels of luminosity.

15

17

19

21

23

25

27

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

sample index

lig
ht

 s
en

so
r v

al
ue

0

5

10

15

20

25

30

35

40

45

18 19 20 21 22 23 24 25 26

light sensor value

nu
m

be
r

of
 s

am
pl

es

50

52

54

56

58

60

62

64

66

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

sample index

lig
ht

 s
en

so
r

va
lu

e

0

5

10

15

20

25

30

35

52 53 54 55 56 57 58 59 60 61 62 63 64 65

light sensor value

nu
m

be
r

of
 s

am
pl

es

Figure 2. 150 light samples for two different light
conditions, taken with 500 millisecond intervals.
Average values are 22.5 and 60.0. Raw values are
shown to the left, value distribution to the right.

When using an ANN there is one output per
action, where the output value corresponds to the
action-value estimate of the corresponding action.
With five actions and three state variables, a 5x3
weight matrix can represent the weights (no bias
input used here). A “hand-coded agent” with pre-
defined weights (Table 1) was used in order to prove
that a linear approximator can solve the control task
and as a reference for judging how good the
performance is for learning agents. These weights
were determined based on the principle that if the
light value is greatest in the middle, then make the
forward-going action have the biggest output value.
In the same way, if the light value is greater to the
left, then favour some left-turning action and vice
versa for the right side.

The hand-coded agent reached the goal after the
10-episode average of 19.3 steps. In order to
compare with agents using ε-greedy exploration, the
hand-coded agent was also tested for the two values
of ε used here, i.e. 0.1 and 0.2 (selecting a random
action every 10 and 5 times). The 10-episode average
for ε = 0.1 is 20.8 steps and for ε = 0.2 it is 31.1. One
of the biggest reasons that the average episode length
grows so much when increasing the value of ε is that
if random actions are used close to the lamp, then the

agent might not be able to reach the light at all
anymore. The hand-coded agent with ε = 0.2 was
moved back to the start position twice.

Table 1. Hand-coded weights. One row per action,
one column per state variable (light sensor reading).

Action Left Middle Right
Forward 0.1 0.8 0.1
Left/forward 0.6 0.3 0.1
Right/forward 0.1 0.3 0.6
Left 0.6 0.2 0.2
Right 0.2 0.2 0.6

Learning agents used the same linear function

approximator architecture as the hand-coded agent.
Weights are modified by the Widrow-Hoff training
rule (4). Experiments were performed both with
weights initialised to small random values in the
range [0, 0.1) and with weights having optimistic
initial values in the range [1, 2). Such weights are
optimistic because weight values after training
should converge to values whose sum is close to one.
This is because state variable values and reward
values are all light sensor readings, so the estimated
reward value should be close to at least one of the
state variable values. If the RL is successful, then the
estimated reward should even be a little bit bigger
since the goal by definition of RL is to make the
agent move towards states giving higher reward.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

episode number

nu
m

be
r

of
 s

te
ps

eps=0.1
eps=0.2
eps=0.1, OIV
eps=0.2, OIV

Figure 3. Number of steps per episode, average
values from 5 runs. OIV indicates “optimistic initial
values”.

Actions were selected using ε-greedy exploration
with ε = 0.1 and ε = 0.2. The learning rate α in
formula (4) was 0.0001 in all experiments, which
was determined through experimentation. Bigger
values (such as 0.001) lead to weight oscillations,
which make the learning fail. Since light sensor
values range from zero to 100, it is also easy to see
from formula (4) that weight modifications become
too large with α values greater than 0.0001.

Figure 3 shows the number of steps per episode as
an average from five runs per agent. The number of

runs was limited to five due to the long experiment
times that are typical for real-world robot
experiments. Despite the limited number of runs,
some interpretations remain possible. For instance,
using ε = 0.1 with small random initial weights gives
very long initial episodes. Since learning increases
the weights of the first action used, that action is
selected all the time until other actions are tested and
can update their weights, i.e. every ten steps as an
average. This tends to give a policy where only one
or two actions continue to be used for over 100 steps,
which usually does not make the robot move closer
to the light. However, with ε = 0.1 and small random
initial weights, there seems to be an advantage in
finding an optimal policy as shown by the last two
episode averages. Using optimistic initial values
gives an advantage with ε = 0.1, but with ε = 0.2 it
doesn’t provide any advantage compared to the agent
using small random initial values.

Table 2. Statistics from five runs for different ε
values and weight initialisation methods. “Average 3
best” values are the average value of the three best
episodes in Figure 3. OIV stands for “optimistic
initial values”.

Agent Total
steps

Average
3 best

Manual
resets

ε=0.1, rand. 516 21.6 15
ε=0.2, rand. 388 27.4 13
ε=0.1, OIV 426 24.9 16
ε=0.2, OIV 468 30.1 16

Table 2 resumes some statistics for the four

agents. The number of total steps shows that the
agent using ε = 0.2 and random initial weights
performs the best. This advantage is further
illustrated by the results obtained when taking the
average of the three best episodes. With ε = 0.2, the
hand-coded agent had an average episode length of
31.1 steps, so with this ε-value both learning agents
perform better. The total number of manual resets to
the start position for all episodes and runs with the
agent also indicates that the agent with ε = 0.2 learns
a “harmless” policy the quickest. With ε = 0.1, the
hand-coded agent had an average episode length of
20.8 steps, which is not achieved by neither learning
agent using the same ε value. It should, however, be
pointed out that the agent using random initial
weights and ε=0.1 has a very good average
performance for the last two episodes, 19.4 and 18.4.

Even though only immediate reward is used,
using reward discounting might still somehow be
useful. Taking into account already known next-state
action value estimates might make learning faster by

using already learned next-state action values. Q-
learning was used with three different discount rates,
0.0 (no discounting), 0.2 and 0.5. ε was set to 0.2 and
weights were initialised to small random values. As
shown by the results in Figure 4 and Table 3, using
discounting makes the agent perform worse. In fact,
discounting seems to make the agent get “blocked”
into repeatedly using the same actions in the
beginning of exploration.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

episode number

nu
m

be
r

of
 s

te
ps

dr=0.0
dr=0.2
dr=0.5

Figure 4. Effect of discount rate (dr) on learning.
Weights initialized to small random values, ε=0.2.

Table 3. Numerical statistics for different discount
rate (γ) values. Weights initialized to small random
values, ε=0.2.

Agent Total steps Aver. 3 best Man. resets
γ=0.0 388 27.4 13
γ=0.2 498 29.9 29
γ=0.5 479 29.1 17

5 Conclusions
Even though the light-seeking robot task seems
simple, it is still in many aspects comparable with
others performed earlier using real robots. Both the
robot itself and the environment are sources of noise,
which makes the learning task highly stochastic.
Especially the use of a linear function approximator
makes it possible to overcome or at least reduce
these challenges that are typical in real-world tasks.
Using a linear function approximator also makes it
possible to use continuous-valued state variables
directly without value discretization or scaling.

The best learning agents outperformed a hand-
coded one, which gives an indication of the
advantages that can be obtained by using a learning
and adaptable control model instead of using a pre-
programmed and static one.

Future work will attempt to solve more difficult
tasks involving delayed reward and contradictory
goals, e.g. reaching a light source while avoiding
obstacles. In such tasks the importance of selecting a
good exploration policy can be expected to further

increase. Developing exploration policies is therefore
a main subject of future research.
References:
[1] Barto, A.G., Sutton, R.S., Watkins C.J.C.H.

(1990). Learning and Sequential Decision
Making. In M. Gabriel and J. Moore (eds.),
Learning and computational neuroscience :
foundations of adaptive networks. M.I.T. Press.

[2] Boyan, J. A., Moore, A. W. (1995).
Generalization in Reinforcement Learning: Safely
Approximating the Value Function. In Tesauro,
G., Touretzky, D., Leen, T. (eds), NIPS'1994
proc., Vol. 7. MIT Press, pp. 369-376.

[3] Gullapalli, V. (1992). Reinforcement Learning
and its Application to Control. (Ph.D. Thesis)
COINS Tech. Rep. 92-10, Univ. of Mass..

[4] Lin, L.-J. (1991). Programming robots using
reinforcement learning and teaching. In Proc. of
the Ninth National Conference on Artificial
Intelligence (AAAI), pp. 781-786.

[5] Mahadevan, S., Connell, J. (1992). Automatic
Programming of Behavior-based Robots using
Reinforcement Learning. Artificial Intelligence,
Vol. 55, Nos. 2-3, 311-365.

[6] Mataric, M.J. (1994). Reward Functions for
Accelerated Learning. In Cohen, W. W., Hirsch,
H. (eds.), Machine Learning: Proceedings of the
Eleventh International Conference. Morgan-
Kaufmann, CA.

[7] Millán, J. R., Posenato, D., Dedieu, E. (2002).
Continuous-Action Q-Learning. Machine
Learning, Vol. 49, 247-265.

[8] Rumelhart, D. E., McClelland, J. L. et al. (1988).
Parallel Distributed Processing Vol. 1. MIT
Press, Massachusetts.

[9] Rummery, G. A., Niranjan, M. (1994). On-Line
Q-Learning Using Connectionist Systems. Tech.
Rep. CUED/F-INFENG/TR 166, Cambridge
University Engineering Department.

[10] Sun, R., Peterson, T. (1998). Autonomous
Learning of Sequential Tasks: Experiments and
Analyses. IEEE Trans. on Neural Networks, Vol.
9, No. 6, 1217-1234.

[11] Sutton, R. S. (1988). Learning to predict by the
method of temporal differences. Machine
Learning, Vol. 3, 9-44.

[12] Thrun, S.B. (1992). The role of exploration in
learning control. In DA White & DA Sofge,
(eds.), Handbook of Intelligent Control: Neural,
Fuzzy and Adaptive Approaches. Van Nostrand
Reinhold, New York.

[13] Widrow, B., Hoff, M.E. (1960). Adaptive
switching circuits. 1960 WESCON Convention
record Part IV, Institute of Radio Engineers, New
York, pp. 96-104.

	Introduction
	Reinforcement learning principles
	Exploration/exploitation trade-off
	Q-learning
	Generalisation

	Reinforcement learning in robotics
	Experimental results
	Conclusions

