
Object-Oriented Parametric Design of Constrained Motion Laws
R.GARZIERA, A.TASORA

Dipartimento di Ingegneria Industriale
Universit̀a degli Studi di Parma,

Parco Area delle Scienze, 43100 Parma,
ITALY

Abstract: - In this paper, a new method to design motion laws for automatic devices is proposed, featuring the
ability of imposing constraints over sequences of functions, each defined by parameters. The optimal value for
function parameters is obtained applying a Newton-Lagrange process over a constrained optimization problem.
The outer Newton loop adopts a Bunch-Parlett linear solver which exploits the sparsity of the coefficient matrix,
thus allowing high computational efficiency. The resulting method has been implemented into a custom multibody
software which provides a powerful yet expandable way to design motion laws for mechatronic devices.

Keywords: - Functions, motion laws, robots, parametric design, optimization.

1 Introduction
The development of automatic devices and robots
often requires the cumbersome process of designing
the motion laws for the controlled degrees of freedom.

Many kinds of motion laws are currently adopted
for this purpose (polynomial, cycloidal, etc.), usually
joined into a sequence of multiple functions if
complex trajectories are required [1].

Dealing with long sequences of motion laws, the
many degrees of freedom offered by the parameters
of the function segments could be subject to user-
defined constraints: simplest cases can be solved
immediately by analytical methods, if constraints are
as simple as imposed continuity between segments or
total movement over a fixed time span.

However, introducing more complex constraints
(such as imposing acceleration or position at generic
time values, setting whatever formula relationship
between parameters, etc.) requires a generic, non-
heuristic approach to the problem. Here we discuss
a method which can be used to impose arbitrary
constraints to the motion laws, that is a constrained
non-linear optimization problem over the space of
function’s parameters.

In order to define sequences of functions, we
adopted an object-oriented approach where each
function segment is an instance of a specific class.
Instancing and sequencing of functions can be done
at compile-time (with C++ language) or at runtime
(using Javascript interpreted language).

Finally, also an interactive graphical user-
interface has been developed so that constraints over
motion laws can be placed easily into the graph of the
function in form of dimensioning symbols, just like

most variational-parametric CAD software does for
geometric shapes.

2 The problem
Let consider a motion law as a piecewise function of
the independent variablet, that is ay = f(t) function
f : t ∈ R+ → y ∈ R.

Most often the shape of such function can be
defined by a finite set of parameters (for example the
position and weights of knots, in casef(t) is a spline),
whose value can be decided in order to achieve some
specific goal. Hence alln function parameters can be
collected into aq vector, withq ∈ Q,Q ⊂ Rn that is

q = {q1, q2, ..., qn}T . (1)

Note that in case of functions which depend on
w sub-functions, such as in the case of sequences
or operations between children functions, a vector of
design parameters can still be defined, as a collection
of the parameter vectorsqT

Fi of the w children
functions:

q =
{
qT

F1,q
T
F2, ...,q

T
Fw

}T
. (2)

In general, we have af : T ,Q → Y mapping:

y = f(t,q) f : t ∈ R,q ∈ Rn → y ∈ R. (3)

This f(t,q) function can be subject tom non-
linear constraints, each with mappingCi : Q →
Ci, which can be collected into a compact vectorial
constraint:

C(q) = 0 C : q ∈ Rn → C(q) ∈ Rm, (4)

for C ∈ C. Different approaches for the solution ofq
will be discussed heretoafter.

t

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.1

0.2

0.3

0.0

-0.1

-0.2

-0.3

-0.4

y=0.2

dy/dt=0

dy/dt=C

ydt=B�

max ddy/dtdt=3

Figure 1:Motion law with user-imposed constraints.

t

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0.1

0.2

0.3

0.0

-0.1

-0.2

-0.3

-0.4

C1 continue

Linear Linear Polynomial Linear Spline Sine
1 2 3 4 5 6 ..

C0 continue

dy/dt=-B

2,8
5,1

Figure 2:Constrained sequence of basic segments.

2.1 Constraints
Depending on the features required to the motion law
y = f(t), appropriate constraint equations can be
introduced in eq.4. For example, the function may
have specific values ofy at given instants of timet, as
well as specific values of speed and acceleration, not
necessarily at once (Figure 1).

Also, in most complex situations, constraints
could put into relation either some parametersq and
function values (or derivative, or integrals),

When dealing with functions made by a sequence
of segments, the requirement of Cn-continuity
between such sub-functions can be represented by a
constraint, acting on the parameters of these functions
(Figure 2). For example one could build a sequence of
polynomial functions, then require that all are tangent
at the interfaces.

Following is a list of most useful constraints,
whose meaning in a context of motion design is self-
explaining.

• Prescribed valueYa at givenTa time instant:
y|Ta − Ya = 0

• Prescribed n-th derivativeDa at givenTa time
instant1:
(∂ny/∂tn)|Ta −Da = 0

• Prescribed integralIa at givenTa time instant:
(
∫

ydt)|Ta − Ia = 0

• C0-continuity between segments:
yTa+ − yTa− = 0, with Ta interface between
two segments,

• Cn-continuity between segments:
(dny/dtn)|Ta+ − (dny/dtn)|Ta− = 0.

• Prescribed valueQ of a parameterqi:
qi −Q = 0

• Most generic constraint:
C(q) = 0

All the equations above can be written asCi(q) =
0, and these can be collected in a vector of equations,
that isC(q) = 0 as needed in Equation 4.

2.2 Case of unique solution(s)
In the casem = n, wheredim(C) − dim(Q) = 0,
nonlinear equation 4 can be solved for a rootq ∈ Q.
This problem can be faced with the straightforward
application of a Newton-Raphson method, which
converges to a numerical approximationq̃ of the exact
rootq after few iterations:

∆qi+1 = −
[
∂C(qi)

∂q

]
C(qi), (5)

qi+1 = qi + ∆qi+1 (6)

where [∂C/∂q] is the jacobian ofC respect to
the q parameter vector, and we will write it[Cq]
heretofore.

However it often happens that the system has
more degrees of freedom than the applied constraints.
This is the case ofm < n, that isdim(C) < dim(Q),
and poses a different challenge. This is the case which
we will deal with, in search of the highest generality.

2.3 Under-constrained case
Since an underconstrained problem leavesn − m
degrees of freedom, we can try to chase the solution
which minimizes some useful function, for example
the least change from the initial stateq0 given at the
beginning of the Newton Raphson process (this can be
an useful default behavior of the solver because each
time the user modifies a constraint, he would like to
see the smallest change in other parts of the function
under inspection).

Otherwise, introducing more freedom of control
from the user point of view, the minimization could
search the least value of some user-defined function,

for example when one aims at least acceleration, least
jerk, smallest average speed and so on [2].

In either cases, one ends with a constrained
minimization problem [3] of the type:

min |qF (q) (7)

C(q) = 0 (8)

whereF : Q → F , F ⊂ R,Q ⊂ Rn is a generic
objective function which should be minimized,q ∈ Q
are the optimization variables, andC : Q → C are the
constraints.

The Lagrangian,

L(q, λ) := F (q) + λTC(q) (9)

can be used to convert the constrained optimiza-
tion problem into a system of nonlinear equations,
in fact the first order optimality conditions state that
at KKT points (ex: a local minimum, saddle or
maximum) the Lagrangian gradient must vanish:

{
∂L/∂q
∂L/∂λ

}
(q, λ) = 0, (10)

{
∂F/∂q + [∂C/∂q]T λ

C(q)

}
= 0 (11)

Equation 11 can be written in the compact form
G(y) = 0, whereG is the lagrangian gradient (a

nonlinear function of variablesy =
{
qT , λT

}T
) The

solution of the nonlinear problemG(y) = 0 may
come from a Newton Raphson method, that is:

∆yi+1 = −
[
∂G(yi)

∂y

]−1

G(yi), (12)

yi+1 = yi + ∆yi+1. (13)

The method may converge in few steps if a good
initial estimate is provided, but the solution of the
linear system in the step of equation 12 may be be
difficult [4], either for the huge dimension of the
jacobian matrix, either because such matrix may be ill
conditioned, either because some parts of the matrix
must be obtained by numerical differentiation, prone
to roundoff and truncation.

In fact the linear system for the Newton step
(equation 12) can be written as[K]∆yi+1 = −G(yi):
[

[W] [Cq]T

[Cq] [0]

]{
∆qi+1

∆λi+1

}
=

{−gi + [Cq]T λi

−Ci

}
(14)

where the terms have the following meaning:

• [W] :=
[[

∂2F/∂q2 +
∑

j λj∂qqcj

]]

• [Cq] := [∂C/∂q]

• g := ∂F/∂q

The block-structured[K] matrix,

[K] =
[

[W] [Cq]T

[Cq] [0]

]
(15)

often calledKKT (Karush-Kuhn-Tucker) matrix, is
highly sparse, symmetric and indefinite. However it
may be singular if constraints are ill conditioned, that
is whenrank([Cq]) < dim(C), or when the Hessian
block is near singularity, that is whendet[W] ≈ 0.

Also, recalling thatλi+1 = ∆λi+1 + λi, equation
14 can be written in an equivalent form which requires
less floating point operations:
[

[W] [Cq]T

[Cq] [0]

]{
∆qi+1

λi+1

}
=

{ −gi

−Ci

}
(16)

Let consider the following example. If one wants
theq solution which minimizes the objective function
F = 1

2q
Tq, subject to constraintsC, the hessian

becomes a simple diagonal matrix[I]. Also, the first
step of the Newton procedure turns into the following
system, forq0 = 0:
[

[I] [Cq]T

[Cq] [0]

]{
∆qi+1

λi+1

}
=

{
0
−Ci

}
(17)

Special methods can solve the linear system
of equation 17 by exploiting the block-sparsity of
the [Cq] matrix, for example the decomposition of
[K] into a Bunch-Parlett[L][D][L]T form can be
very efficient in this circumstance [5], esspecially
when adopting custom algorithms for sparse matrices
factorization [6].

Also, if gi is kept updated asgi = ∂F/∂q, given
objective

F =
1
2
[q− q0]T [q− q0] (18)

we get:
[

[I] [Cq]T

[Cq] [0]

]{
∆qi+1

λi+1

}
=

{−qi + q0

−Ci

}
(19)

whose meaning can be more intuitive: at the end
of the Newton loops, the new state will satisfy the
constraints, with the smallest change from the initial
guessq0. This is useful in an interactive context,
where an user may change the constraints on the
functions in successive steps, testing different design
solutions: each time a constraint is changed/added,
the last state is used asq0 and the Newton loop
with equation 19 is performed, hence providing a
new function whose shape is not too far from the last
before the tweaking.

 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

t

y
y

fA fB

ChFunction_op_fA_of_fB
fA fB

ChFunction_sine

ChFunction_sine
w A φ

w A φ

ChFunction_op_fA_exp_fB
fA fB

ChFunction_constant

ChFunction_linear
C B

C

�y ����������	
������	
��Ω�t������������t ��

ChFunction_op_Max_fA_fB
fA

Figure 3:Example of a complex function as a tree of basic building blocks.

3 Implementation
The above theory has been implemented by using the
C++ programming language, either in form of a stand-
alone library, either integrated into our multibody
simulation software [7].

3.1 Software design
Driven by a modular approach, the features of
our library allow the building of complex motion
laws starting from basic function objects (called
ChFunctionsheretoafter), which can be subject to
operations (sequencing, multiplication, time warping,
integration, etc.) by linking them to otherChFunction
objects.

This building-block architecture means that a
complex function can be seen as an hierarchical tree
of simplier functions (Figure 3).

Also constraints are objects which can be linked
to functions as needed, unlimited in number or type.

Instancing of functions and constraint objects (as
well as setting up their hierarchy) can be done at
C++ level, with compiled statements, or at scripting
level, using an interactive shell and the compiled
language Javascript (ECMA-262 specification, ISO-
16262 standard). In fact, all C++ classes have a
Javascript wrapper which allows an object-oriented
control of ChFunctionsand constraint objects using
a scripting syntax which is very similar to C++.

Finally, an interactive graphical user interface has
been implemented in our C++ multibody software,
thus allowing an intuitive creation and manipulation
of ChFunctionswhile designing the motion-laws of
robotic devices (Figure 4 and 5).

3.2 Function classes
The ChFunctionbase class implements the common
features of all inherited functions, for example
a default numerical differentiation is provided, to
get ∂ny/∂tn. Then, all inherited functions must
at least provide they = y(t), but they could

also overload / override the base methods when
necessary, for example theChFunctionsineoverrides
the default numerical differentiation because the
analytical derivative is known.

A partial view of the inheritance tree can be seen
in Figure 6. Among the many specialized classes,
we stress the importance of theChFunctionsequence
class, which is used to collect many sub-functions
(maybe other sequences too) into a sequence of
segments.

There are also functions which can modify other
functions, for exampleChFunctionop Fa of Fb can
be used to build functions of thefa(fb(t)) type;
ChFunctionrepeatcreates periodic functions, and so
on.

Another important class isChFunctionrecorder
which can handle functions represented by sampled
data, for example coming from instrumentation, from
other programs or from numerical simulations. This
class also implements a custom scheme for a robust
and reliable numerical differentiation of sampled data,
as exposed in [8].

Note that, in order to support the constrained
optimization method presented in these pages, all
functions must provide a method which exposes their
optimization parameters, that is the vector of variables
which can be collected into theq vector of equation
2.

3.3 Constraint classes
All constraints are handled as C++ objects. Each
ChFunction can own an unlimited number of
constraints, as they are inserted in a linked list.

Each specialized constraint class must implement
the base methods which compute itsC(q) residual,
to be used in equation 19 for the Newton Raphson
process. If possible, also the[Cq] jacobian should
be provided by member overriding, if an analytical
method is known, otherwise the base class can still
compute it by using a default numerical differentiation

Figure 4: Graphical user interface for easy function creation
and manipulation.

Figure 5: Constrained parametric design of motion laws as a
tool for multibody simulation of robotic devices.

ChObject

ChFunction_constant

ChFunction_linear_ramp

ChFunction_sine

ChFunction_cosine

ChFunction_polynomial

ChFunction_cubic_sigma

ChFunction_motion_capture ChFunction_constant_acc

ChFunction_7_pieces

ChFunction_fillet

ChFunction_recorder

ChFunction_spline

ChFunction_Javascript_parse

ChFunction_poly_345

ChFunction_mirror

ChFunction_repeat

ChFunction_integrate

ChFunction_filter

ChFunction_binary_operation

ChFunction_Perlin_noise

ChFunction_sequence

ChFunction

ChFunction_linear

ChFunction_constant_speed

ChFunction_interpolant

ChFunction_Nurbs

ChFunction_Bezier

ChFunction_polygonal

ChFunction_parser

ChFunction_Matlab_parse

ChFunction_op_mult_fA_fB

ChFunction_op_add_fA_fB

ChFunction_op_ fA_of _fB

ChFunction_ . . .

ChFunction_ramp

ChFunction_ . . .

ChFunction_unary_operation

ChFunction_derive

ChFunction_lowpass

ChFunction_bandpass

ChFunction_custom_filter

Figure 6:Class hierarchy of motion laws.

method.
Redundant constraints are detected as soon as

they are inserted into the list, by using the following
method: a single solution of equation 19 is performed
just after the constraint insertion, giving null pivot
during the factorization of the[K] matrix if the
constraint can be given as a linear combination of two
other preexisting constraints.

4 Examples
Basic applications of the method are now discussed.

4.1 Constant acceleration
Motion law ramps with constant acceleration (and
deceleration) are well known, being made of two
parabolic pieces, with durationstv andts − tv, each
with own constant accelerationA and B. If the
ramp heighth is imposed, for zero start-speed and
zero end-speed there is a simple analytical solution:
A = 2h/tvts, B = 2h/(ts(ts − tv)). The same
result may be obtained automatically with the method

presented in this paper, even if one does not remember
the analytical solution.

We starts with a function of typesequence,
containing two sub-functions of typeconstant. Let
the duration and values of these constant be arbitrary
values at the beginning. Now, put thesequence
function inside a function of typeintegrator, then
again into anotherintegrator: we get the data tree
of figure 7. Hence the root function is the motion
rampy(t), for generic constant accelerations whose
value is unknown. Finally, adding constraints such as
y|0 = 0, y|ts = h, (∂y/∂t)0 = 0, (∂y/∂t)ts = 0,
tv/ts = 0.5, the method will automatically find the
right parametersq which satisfy all requirements, in
detail theA and B values of the acceleration will
correspond exactly to the analytical formulas.

4.2 Complex sequence
Now a more complex motion law is presented, where
the values of function parameters which can satisfy
the constraints are not as trivial as in the previous

ChFunction_constant ChFunction_constant ChFunction_constant
A

ChFunction_constant

ChFunction_integrate

A

Integrand f() C0

ChFunction _integrate
Integrand f() C0

A A

ChFunction_sequence
T Start T End f() sequence

Next Prev Next Data Prev Next Data Prev Next Data Prev Data
T duration T duration T duration T duration

 y(t)

 dy/dt

 d2y/dt2 Constraints…
 t0 tv ts

 Y0

 YS

 h

Figure 7:Example of a block-structured parametric function which reproduces a constant-acceleration motion law.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t

y
y
y’
y’’

 y’=V1

 y’=V2

 y =H3

 y =H1

 y =H2

C0C1

C0C1

C0C1

C0C1

C0C1

Figure 8:Motion law with multiple constraints. Function segments are of polynomial type.

example. While designing the motion for a tool of
an automatic packaging device, a request was that the
motion law must have two constant-speed segments
(at given time intervals) before reaching the final
ramp height. Also, at a given instant of time, the
function must pass through a specificy value. The
segments between the two constant-speed intervals
are of polynomial type, and the resulting motion
law (after application of constraints) can be seen in
Figure8.

5 Conclusion
A new method to design motion laws has been
proposed. It is based on the ability of imposing
constraints over sequences of functions, each defined
by parameters. The optimal value for these parameters
is obtained after the application of a modified Newton-
Lagrange process over a constrained optimization
problem of KKT type. The outer Newton loop
is endorsed by a Bunch-Parlett linear solver which
exploits the sparsity of the coefficient matrix, hence
allowing high computational efficiency even in case
of many constraints.

The resulting theory has been implemented into
our software for multibody simulation, thus providing
a powerful yet expandable way to design motion laws
for robots and automatic devices.

References

[1] G.Ruggieri, P.Magnani,Progettazione meccanica
funzionale, Ed. UTET, Torino, Italy, 1990.

[2] R. Faglia, Progetto del movimento per sistemi a
camma tramite algoritmo genetico, XII AIMETA,
Napoli, Ottobre 1995.

[3] S. Rao, Engineering Optimization: Theory and
Practice, Ed. John Wiley and Sons, New York.

[4] J.C. Haws and C.D. MeyerPreconditioning KKT
systems, Numer. Linear Algebra Appl. 2001; 00:16

[5] J.R. Bunch, L.Kaufman, and B.N.Parlett,Decomposi-
tion of a symmetric matrix, Numer. Math., 27 (1976),
pp. 95–109

[6] A.Tasora, An optimized lagrangian multiplier ap-
proach for interactive multibody simulation in
kinematic and dynamical digital prototyping, VII
ISCSB, Ed. CLUP, Milano, 2001.

[7] P.Righettini, A.Tasora Implementazione object-
oriented delle strutture dati di un codice di calcolo
multibody general-purpose, GIMC 2000 - XIII
Convegno Italiano di Meccanica Computazionale,
Brescia, 13-15 november 2000, Italy

[8] A. Cuccio, R. Garziera, S. Mauro, M. Silvestri, P.
Righettini, R. RivaUn linguaggio generale per la
descrizione di leggi di moto, XIV Congresso Aimeta,
6-9 Ottobre 1999, Como, Italy.

