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Abstract: - This paper presents a versatile approach to the synthesis of accurate state observers for flexible link mechanisms 
and manipulators. The design of a state observer should be always based on a model providing an adequate description of the 
system dynamics. However, when flexible link mechanisms are considered, the synthesis of a state observer becomes very 
challenging, since only nonlinear models may be adopted to reproduce the system dynamic response with adequate accuracy. 
In this work the possibility of employing a Kalman estimator together with a suitable piecewise-linear model is investigated. 
Numerical results prove the effectiveness of the proposed approach when it is applied to the synthesis of a state observer for a 
four-bar linkage with all the links flexible. 
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1   Introduction 
Considerable research effort has been recently devoted to 
the development of adequate models and control schemes 
for manipulators, and more in general mechanisms, with 
light and flexible structures. These mechanical systems 
might be profitably employed in such fields as industrial 
manufacturing, biomechanics and aerospace engineering.  
The chief problems to be faced when flexible structure 
mechanisms are employed are related to the not negligible 
elastic deformations which generally occur in the links. 
Such deformations, and the consequential undesired 
vibrational phenomena, make it difficult to control the 
mechanism motion accurately, and to achieve satisfactory 
precision and repeatability levels in task execution [1]. On 
the other hand, it is well known that contemporary industrial 
manipulators prevent the aforementioned problems through 
low payload-to-weight ratios. Ratios close to 1:15 are 
normally employed [2]. When the payload-to-weight ratio 
increases, and so when the lightness of the links increases, it 
is no longer possible to assume that the links are rigid and to 
neglect, in the control scheme synthesis, the elastic effects. 
The development of models ensuring an accurate descrip-
tion of the dynamic behavior of flexible link mechanisms 
has therefore assumed primary scientific relevance. In 
particular, such models take a crucial role in the synthesis of 
effective position and vibration control schemes. 
The prevalent approaches to flexible mechanism modeling 
make use of discrete representations obtained through the 
finite element method [3, 4] or modal expansion techniques 
applied to either continuous [5, 6] or discrete [7, 8] models. 
In these models it is often assumed that the overall motion 
of a flexible link mechanism can be split into the rigid-body 
motion of a moving reference and the superimposed small 
elastic motion caused by the link elasticity [9]. 
Numerical and experimental investigations [10, 11] have 
proven that accurate dynamic models for flexible link 

mechanisms cannot neglect the mutual influence between 
rigid-body and elastic motion nor the system chief inertial 
and geometric nonlinearities. Such “fully coupled” 
nonlinear models [3, 4] provide a very accurate description 
of the system dynamic response, but only have minor utility 
in the synthesis of control schemes. In fact, though fully 
coupled nonlinear models can be effectively employed in 
the implementation of simulation environments where new 
control schemes may be tuned and tested [12], they do not 
allow a direct use of the classical control design and 
stability analysis techniques developed for linear systems. 
Notwithstanding, linear control schemes have been widely 
employed in this field, with varying degrees of success. In 
particular, linear quadratic optimal (LQ) control strategies 
have been effectively adopted by some researchers both to 
control single-link [13, 14] and multi-body systems (e.g. 
two-link arms [14], and four-bar linkages [15]). In these 
works approximate state-space linearizations of the dynamic 
models are used, and the control actions are based on the 
values assumed by the state variables of the systems. A 
typical assumption made when LQ regulators are employed 
is that the vector of the full state of the system is available 
for feedback. Yet, the direct measurement of all the state 
variables of a flexible link mechanism is almost ever 
impossible, hence, in order to practically employ such 
control strategies it is necessary to design a state observer 
which reconstructs the state vector from the value of the 
sensed output (i.e. the measured variables). For example, 
the use of an observer, has allowed attaining satisfactory 
experimental results in [13], where a single-link manipula-
tor is considered. Clearly, practical difficulties arise when 
designing observers for flexible link mechanisms of a 
higher complexity: the dynamic models which should be 
employed are highly nonlinear and the real-time computa-
tion of the state variables may become very expensive.  
On the basis of the considerations above, the use of fully 
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coupled nonlinear models appears to be inconvenient in the 
synthesis of regulators for flexible link manipulators. This 
fact, in addition to the increased availability of control 
system design [16, 17] and stability analysis methods [18, 
19] for switched linear systems (i.e. dynamic systems 
capable of reproducing the response of physical systems by 
means of a finite number of linear and time invariant 
models), makes the use of piecewise-linear models 
attractive also when dealing with flexible link mechanisms. 
The objective of this work is to present and to prove the 
effectiveness of a versatile approach to the synthesis of 
accurate state observers for flexible link mechanisms and 
manipulators treated as switched linear systems. The 
approach is based on the use of a Kalman estimator together 
with a piecewise-linear model obtained by linearizing a 
fully coupled nonlinear model about a suitable set of 
operating points (equilibrium configurations). As underlined 
above, the design of accurate state observers represents a 
critical requirement for the synthesis and real-time 
implementation of regulators for the simultaneous control of 
rigid-body motion and vibration. 
In some previous works, a very accurate finite element and 
fully coupled nonlinear model has been developed [3] and 
validated experimentally with reference to four-link [3] and 
five-link [20] planar mechanisms with all the links flexible, 
except for the ground link. In [21] a linear model in state-
space form has been obtained by linearizing the nonlinear 
model proposed in [3] about a generic operating point. A 
numerical and experimental validation of the linearized 
model has been provided in [22] with reference to a planar 
four-bar linkage with all the links flexible. Both small and 
large displacements of the mechanism with respect to an 
equilibrium configuration have been considered, proving 
that when large displacements are to be reproduced, a 
piecewise-linear model can be successfully employed.  
In this paper a piecewise-linear model, based on the 
linearized model proposed in [21], is employed in the 
synthesis of an observer of the state of the flexible link 
mechanism also considered in [22]. The observer perform-
ances are assessed in simulation by comparing the actual 
values of the state variables with those computed by the 
observer on the basis of the sensed output. The state 
variables considered are the elastic displacements and 
velocities at the nodes, and the value of the generalized 
coordinate (and of its first time derivative) of the moving 
reference configuration (‘ERLS’ [9]) from which the elastic 
displacements are measured. The sensed output, instead, 
only comprises a limited number of variables which can be 
easily measured: the crank position and the link curvatures.  
A piecewise-linear model has been chosen to ensure 
accurate estimates of the observer even when large 
displacements form an initial equilibrium configuration are 
considered. The switching among different linear models is 
regulated by the value taken by the ERLS generalized 
coordinate. Finally, in order to make it possible to use the 
observer together with a controller operating in real-time at 

a reasonable sample time (0.001 s), the linear models 
employed have been appropriately truncated not to include 
high frequency modes of vibration, whose dynamics could 
not be reproduced. Such a truncation is proven to cause 
minor decrease of the estimate accuracy  
Section 2 briefly outlines the chief aspects of the nonlinear 
model and of the one linearized. Only the most relevant 
equations are reported: the interested reader should refer to 
[3] and [21] for further details. The approach followed in 
the synthesis of the state observer is described in Section 3, 
as well as the mechanism studied. In Section 4 the 
implementation of the observer is discussed and the 
simulation results are presented. Finally concluding remarks 
and future directions are given in Section 5. 
 
 
2   The Dynamic Model 
 
2.1 Nonlinear Model 
This section provides a synthetic description of the discrete 
nonlinear model from which the linear model is derived. 
Both the models are valid for any chain of flexible bodies, 
which increases the versatility of the approach followed. 
So as to get a model with a finite number of degrees of 
freedom, the links of the mechanism are subdivided into 
finite elements. Moreover the total motion of each flexible 
link is separated into the large rigid-body motion of an 
equivalent rigid-link system (ERLS) and the small elastic 
deflection of the link with respect to the ERLS itself. In 
particular, the following definitions are employed: 
 ri and ui are respectively the vectors of the positions of the 
nodes in the i-th element of the ERLS and of their elastic 
displacements; the sum of these vectors provides the 
global motion of the nodes of the i-th element. 
 pi is the position vector of a point of the i-th element; 
 q is the vector of the ERLS generalized coordinates. 

All these vectors are defined in a common fixed reference 
frame, a local reference frame following the motion of the 
ERLS is also defined for each element so as to simplify the 
use of the finite element method. 
The equations of motion are obtained through the direct 
application of the principle of virtual work. The total virtual 
work is split into the elemental contributions and damping 
is initially neglected. It holds: 
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where, εεεεi, Di and ρi are respectively the strain vector, the 
stress-strain matrix, and the mass density for the i-th 
element, g is the gravity acceleration vector, f is the vector 
of the concentrated external forces and torques, and δu and 
δr refer to the virtual displacements of all the nodes of the 
model. The following interpolations are employed for the 
virtual displacement and real acceleration of a generic point: 
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iiiiiiiii uTNRrTNRp δ+δ=δ     (2) 

iiiiiiiiiiiiiiii )(2 uTNRTNRuTNRrTNRp &&&&&&&&& +++=  (3) 
in the equations above, Ti is the transformation matrix from 
the global to the local reference frame of the i-th element 
and Ri is the local-to-global rotation matrix; Ni is the shape 
function matrix, which is defined in the local frame. 
As for the real and virtual strains, by introducing the strain-
displacement matrix (Bi) the following hold locally: 

εεεεi = Bi Ti ui δεεεεi = Bi δTi ui + Bi Ti δui  (4)-(5) 
Because the nodal elastic virtual displacements (δu) and the 
nodal virtual displacements of the ERLS (δr) are com-
pletely independent of each other, from the reported basic 
relations, it is possible to get this final expression of the 
system equations of motion: 
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In the equation above, vector t accounts for all the forces 
excluding those related to the second derivatives of the 
generalized coordinates (see Eq.(7)), M is the matrix 
obtained assembling the consistent mass matrices of the 
elements, and S is the ERLS sensitivity coefficient matrix 
for all the nodes. The subscript ‘in’ has been introduced to 
underline that Eq.(6) includes only the nodal elastic 
displacements (and the corresponding matrix elements) 
which are not forced to zero to define the ERLS position. 
Admittedly, the model reproduces the system dynamics 
very accurately because inertia coupling between rigid-body 
motion and vibrations is accounted for (through the off-
diagonal submatrices (MS)in and (STM)in) as well as the 
chief geometric and inertial nonlinearities of the system. 
 
2.2 Linearized Model 
A linearization procedure has been applied to the nonlinear 
model described above, so as to get a state-space linear 
model capable of reproducing the dynamic behavior of a 
flexible link mechanism about an equilibrium configuration. 
The state vector has been defined: [ ]Tququx &&= . By 
reorganizing Eq.(6) the following state space representation 
of the system dynamic model may be adopted: 


































α−−

−−β−α−−

+

+




















=

































q
u
q
u

00I0
000I
00MSSM)M(S
0KSMKMM

f
g

00
00

SMS
IM

q
u
q
u

I000
0I00
00MSSMS
00MSM

G

G
&
&&

&
&
&&
&&

TT

TTTT

2
2   (7) 

where all the components of vector t have been made 
explicit: in particular the matrix MG allows keeping into 
account the Coriolis contributions, K is the matrix obtained 
assembling the stiffness matrices of all the elements, and α 
and β are the Rayleigh damping coefficients. A more 
compact form for Eq.(7) is: vxCxxBxxA )()()( +=& . In 

general, the state vector x and the system input v depend on 
time, while the matrices A, B and C only depend on x.  
The system of nonlinear differential equations shown in 
Eq.(7) has been linearized considering the linear terms of a 
Taylor series expansion about an equilibrium configuration 
where x = xe, v = ve, and 0=ex&  In the neighborhood of the 
operating point, the state vector and the input vector can 
therefore be expressed in the form: x(t) = xe + ∆x(t),  
v(t) = ve + ∆v(t). By introducing these relations into Eq.(7) 
and by adopting the acceptable approximation 

xxAxxxA ee && ∆≅∆∆+ )()( , the following can be obtained:  
)()())(()( vvxxCxxxxBxxA eeeee ∆+∆++∆+∆+=∆ &  (8) 

Some algebraic computations, which are reported in [21], 
allow yielding the linear expression shown below, which 
holds in the neighborhood of any equilibrium configuration: 
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where the symbol "⊗" indicates the inner product of 
[ ]

exx=
∂∂∂∂ jn,ij1,i xBxB L and [ ]

exx=
∂∂∂∂ jn,ij1,i xCxC L  

with respectively xe and ve, for all the subscripts ‘i’ e ‘j’. 
It should be pointed out that since a symbolic form of the 
linearized model has been obtained, once an equilibrium 
configuration is set, the matrices A, B~  and C can be 
immediately computed. Finally, by setting F = A-1 B~  and  
G = A-1 C Eq.(9) can be rewritten in the standard form: 

vGxFx ∆+∆=∆&  (10) 
 
 
3   Design of a State Observer for a Flexible 
Link Mechanism 
The dynamic models described above may be applied to any 
mechanism. In this work they have been employed to 
develop a state observer for the test case considered in [22]. 
The mechanism is a four-bar planar linkage with all the 
links flexible. Fig.1 illustrates the finite element representa-
tion of the mechanism: the links, the joints, the beam 
elements and the nodes are shown. Two elements of the 
same length are used to model link 2 and 3 while a single 
beam element is employed for link 1, which is the shortest 
link. Lumped masses and inertias are used to account for the 
joints and the motor driving the mechanism at joint A. 
Table 1 reports the chief characteristics of the mechanism. 
The elastic degree of freedom forced to zero to define the 
position of the ERLS with respect to the deformed 
mechanism is the horizontal displacement at node 5. 
Finally, the ERLS generalized coordinate q is the (rigid-
body) rotation of the crank (link 1). The finite element 
representation employed for the mechanism, leads to a 
dynamic model with 32 state variables.  
The mechanism is supposed to move on a vertical pane, and 
so the effect of the force of gravity cannot be neglected. 
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Fig.1 Finite element representation of the four-bar linkage 

Table 1 Mechanical parameters of the flexible link system 
Link 0 1 2 3 

Length [m] 0.35965 0.37285 0.52500 0.63200 
Flexural Stiffness: 21.6 Nm2       Cross-Sectional Area: 36E-6 m2 

Joint A B C D 
Mass [kg] - 81E-3 80E-3 - 
Inertia [kgm2] 4.9E-4 - - 12E-6 

 

As a consequence, the components of the state vector 
associated to the nodal elastic displacements generally take 
values different from zero, even when the mechanism is in 
static equilibrium. The values taken by such displacements 
in static equilibrium only depend on the position of the 
ERLS, and consequently on the equilibrium value of the 
generalized coordinate qe. Moreover, it can be proven that 
the equilibrium values of all the matrices in Eq.(9) (and Eq. 
(10)) only depend on qe. There follows, that the sole 
knowledge of qe in an equilibrium point, allows the off-line 
computation of the matrices of the linearized dynamic 
model and of the state vectors in the corresponding static 
equilibrium configuration. This property is successfully 
employed in the design of the state observer. 
The observer synthesized is based on a Kalman estimator. 
So as to implement such an estimator, two requirements 
have to be met: a linear time invariant dynamic model of the 
system must be available, and a linear relation between the 
state variables and the sensed output must exist. Equation 
(10) meets the first requirement about any equilibrium 
configuration. As for the output variables, the mechanism is 
supposed to be instrumented with two encoders measuring 
the absolute rotation of link 1 and 3, at respectively joint A 
(αA) and D (αD). Moreover, calibrated strain gages are 
supposed to be employed to measure the curvatures of the 
same links at approximately the bar midpoints (C1 and C3). 
The vector of the output variables therefore takes the form:  
y = [αA, αD, C1, C3]T. Only  αA is a linear combination of 
state variables, while nonlinear expressions relate the other 
measured variables to the states. Linearized expressions 
have been obtained for  αD and the curvature Ci of the 
generic i-th link: these expressions clearly hold only about 
an equilibrium configuration. The following expressions 
have been used to approximate finite changes of the 
measured variables with respect to their equilibrium values: 

1A uq φ∆+∆=α∆    8qqq,D uqS
e

8 φ=θ ∆+∆=α∆      (11)-(12) 

( )[ ]iqqiqqiiii
ee

qqC uTuTB ∆+∆∂∂=∆ ==
 (13) 

where, ∆uφi is the elastic rotation at node i and q,8
Sθ  is the 

sensitivity coefficient between the generalized coordinate 
and the rigid-body rotation at node 8. The equations above 
can be aggregated in the usual matrix form ∆y = H ∆x. The 
PBH test (involving the matrices F and H) has been used to 
assess the system observability, i.e. to verify that the 
observation of the output variables at all times is sufficient 
to determine the initial values of all the state variables. 
Now, let e and L be, respectively, the vector of the errors of 
the state variable estimates ( x̂ ) and the time invariant gain 
matrix of the asymptotic Kalman estimator [23]. Addition-
ally, let W be the time invariant gain vector of a linear 
regulator, whose control action is proportional to the 
difference between the actual and the equilibrium values of 
the state variables. In this work, an appropriate value for W 
has been found by the solution of an optimal linear 
quadratic problem (LQ) in which a performance index is 
minimized. The design and implementation of the LQ 
regulator is not discussed here because it not pertinent to the 
observer design and performance assessment. 
The dynamics of the overall system, including the linear 
regulator and the estimator, is described by the following 
system of equations: 









∆−∆=
∆−=∆

∆=∆
∆−∆+∆+∆=∆

xxe
xWu

xHy
yyLuGxFx

ˆ
ˆ

ˆˆ
)ˆ(ˆ&̂

 (14) 

The matrix L is chosen so as to minimize the mean square 
error between the estimated and the actual values of the 
state variables. It can be proven that the solution of this 
problem is: L = P HT R-1, where P is the symmetric and 
positive semidefinite solution of the Riccati equation 

QPHRHPFPPFP T +−+= −1T&  and R and Q are the 
measurement and process noise covariance matrices [23].  
Admittedly, these equations only hold in the neighborhood 
of an equilibrium configuration. However, when the state of 
the system shifts significantly from the equilibrium 
configuration, the elements of the coefficient matrices of the 
system may be re-computed to keep a reliable description of 
the physical system dynamics. Such re-computation 
corresponds to a switch (i.e. a discrete transition) between 
linear models. The switch can be made on the basis of the 
value assumed just by qe, since the small amplitude of the 
elastic displacements with respect to the ERLS does not 
impose using further linearized models. This fact simplifies 
the design and implementation of a state observer based on 
a piecewise-linear model. 
 
4   Implementation of the State Observer  
and Performance Analysis 
The theory described in the forgoing sections has allowed 
implementing both a nonlinear dynamic simulator of the 
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mechanism studied and a piecewise-linear state observer. 
The performances of the observer have been assessed by 
comparing the values of the state variables computed by the 
simulator with the observer estimates on a test case. All the 
simulations have been carried out using Matlab/Simulink.  
The practical need of implementing the proposed observer 
(and controller) on a real-time hardware, for future 
experimental investigations, imposes a bound to the 
frequency content of the simulated system dynamics (in 
accordance with Shannon’s sampling theorem) and suggests 
reducing the amount of computational power necessary to 
get the state variable estimates. Both these requirements 
may be met if a reduced-order model is employed. It should 
be noticed that the adopted finite element model, with 32 
state variables, is itself a reduced-order representation of the 
infinite-dimensional physical system. However, given the 
marginal influence on the system response of the high 
frequency modes of the system, discarding such modes 
represents an efficient process of further model reduction. 
For this reason, only the first seven modes of the system are 
retained in the linear model adopted for the implemented 
observer. The figures in this section confirm that ignoring 
the high frequency modes enables computing the state 
estimates with adequate rapidity and with minor errors. 
The test carried out to assess the observer performances 
consists in a fast rotation of the drive shaft from an initial to 
a final static equilibrium configuration. This motion is 
obtained by introducing a step change in the reference path 
of the controlled variable αA (providing a detailed descrip-
tion of the control system goes beyond the scope of this 
paper). While moving from the initial to the final configura-
tion, different linear models should be used to reproduce the 
system dynamics locally. Hence a single linear model 
cannot be employed in the observer synthesis.  
In this work, in order to simplify the observer implementa-
tion, two linearized models of the mechanism have been 
used. They have been obtained by evaluating the matrices F 
and G about the initial and the final equilibrium configura-
tions of the test. The switching among the models takes 
place when the intermediate position is crossed. 
A first evidence of the observer effectiveness is reported in 
Fig.2. In fact, the availability of an accurate estimator also 
affects the performances of the closed-loop control system: 
the better the estimates, the more effective the control 
action. The advantages offered by the proposed observer are 
apparent in Fig.2, where a comparison is made between the 
step responses of the closed-loop system recorded using the 
proposed observer (blue line) and an observer employing 
one linear model holding about the final position (red line). 
The figures from 3 to 6 refer to the test carried out to assess 
the observer performances: a step change of αA of 45°. 
A comparison between the actual (simulated) and the 
estimated values of the ERLS generalized coordinate q is 
shown in Fig.3. The time-history of the error between such 
values (Fig.4) proves that the error quickly converges to 
zero, as theoretically predicted. Fig.4 also shows that the 

maximum error values are achieved when the switching 
between the linear models occurs. This is an obvious 
consequence of the discontinuity introduced be the 
switching, and of the resulting free response of the observer. 
The observer capability of providing accurate estimates of 
also the elastic states is proved by Figs. 5 and 6. These 
figures refer to the elastic displacement in the horizontal 
direction at node 4 (ux4) on link 2. Good agreement is 
confirmed to exist between the actual and the estimated 
displacements, both in terms of amplitude and frequency 
content of the time-histories, even though no sensors are 
assumed to be placed on link 2. Similar results are obtained 
by comparing the actual and estimated values of the other 
state vector components, including rigid body and elastic 
velocities. These evidences are not reported here for brevity.  
 

 
Fig.2 Step response of the system with different observers 

 
Fig.3 Generalized coordinate q: actual and estimated 

 
Fig.4 Error between the actual and the estimated values of q 

 
Fig.5 Elastic displacement ux4: actual and estimated 

 
Fig.6 Error between the actual and the estimated values of ux4 
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5   Conclusion 
In this work a general approach for designing effective state 
observers for flexible-link mechanisms has been presented. 
The proposed method makes use of an accurate piecewise-
linear dynamic model and leads to the synthesis of an 
observer with a structure combining the features of an 
asymptotic Kalman estimator and a switched linear system. 
This structure allows overcoming the difficulties arising 
from the geometric and inertial nonlinearities of flexible 
link mechanism dynamic models. Moreover, in order to 
make the implementation of the observer possible on a real-
time hardware, a reduced order dynamic model is em-
ployed, which only accounts for the most significant modes 
of vibration of the system. The results achieved on a 
numerical test prove that the estimates are accurate and that 
the estimate error dynamics promptly converges to zero. 
The availability of an effective and computationally 
efficient state observer represents an essential starting point 
for the synthesis and experimental validation of position and 
vibration control schemes based on the state vector 
feedback, such as LQ control strategies. 
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