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Abstract: A classic problem in neural networks is the depth investigation of the network. Is there any potential 
benefit when training depth-one threshold circuits by adding extra layers and further training them? This 
question is investigated in a powerful recently introduced artificial intelligence system, called the Logarithmic 
Simulated Annealing (LSA) machine, that combines the Simulated Annealing Algorithm with a Logarithmic 
cooling schedule and the classical perceptron algorithm. The first and second layers are trained with the LSA 
machine learning algorithm. For the learning procedure 50% of the available data are used for training the first 
layer. The first layer consists of v voting functions of P threshold circuits each one. The next 25% are displayed 
to the first layer and the outputs of the first layer are producing new samples of length v that are used for 
training the second layer. The remaining 25% are used for testing the entire network. The main idea is to 
smooth in the second layer the inaccuracies of the first layer, by training the second layer to evaluate the 
significance of each output gate of the first layer. Results of the depth investigation reveal that the second layer 
can produce slightly better results; however the cost of using fewer examples for training the first layer is also 
considerable.  
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1 Introduction 
The LSA machine, introduced in [9], is an 
implementation of a learning algorithm that derives 
from the combination of the Logarithmic Simulated 
Annealing algorithm [1], [16], with the classical 
perceptron algorithm [20], [24]. Simulated 
Annealing is in our days a popular active research 
area [25]. The Simulated Annealing method is a 
feasible method that can successfully handle NP-
hard problems, and is the method chosen in LSA 
machine for the optimization strategy. 
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The main idea of the LSA Machine is to 

use a logarithmic cooling schedule to control the 
unrestricted increase of the classification error on 
training samples caused by the Perceptron 
algorithm [4]. The search is guided by logarithmic 
simulated annealing (LSA), while the 
neighbourhood is defined by the Perceptron 
algorithm. The logarithmic cooling schedule 
applies an inhomogeneous Markov chain, whereas 
in most applications of Simulated Annealing 
homogeneous Markov Chains are used as the 
underlying model. Homogeneous Markov Chains 
are based on an infinite number of transitions at 
fixed temperatures, leading on the one hand to 
optimal solutions, however on the other hand to 



 
 
 

unrealistic real world problems because of the 
infinite time involved in the algorithm. Therefore 
the LSA machine, based on inhomogeneous 
Markov Chains approximates the optimal solutions. 

According to Hajek’s theorem [13] 
approximations to optimal solution are guaranteed 
under certain conditions. However, to verify 
whether Hajek’s conditions are valid for a given 
configuration space is often very difficult. 
Nevertheless, in the various modifications of the 
LSA machine, there are convincing results that this 
approach approximates the optimal solution even if 
it unlikely that the configuration space meets the 
Hajeks convergence conditions. The run-time steps 
sufficiency to approach the minimum value of the 
objective function with probability 1-ε is [3]: 

)/1(log )1( εγ On +  (1) 
Where ã depends on the maximum Ã of the escape 
depth of local minima within the underlying energy 
landscape. Placement problem was used in this 
approach, however this result is independent of the 
problem domain and can be applied to various 
optimization problems The LSA machine 
outperforms the classical perceptron algorithm by 
15% when the sample set is sufficiently large [3].  

Various modifications of the LSA Machine 
have been applied to classify image data (CT image 
classification) [4], [6], [7], to gene-expression data 
analysis [5], [8], and to medical problems [17].  In 
this work we investigate an extension of the 
original LSA Machine by adding an extra layer and 
a new learning method for training the second 
layer. The application domain is the Winskonsin 
Breast Cancer Database [17], a popular binary 
classification domain tackled by many researches 
[2], [10], [11], [12],[15], [18], [21], [22], [23], [26], 
[27], [28], [29], [30]. 
 
 
2 Problem Formulation 
The core of the LSA machine and the learning 
methods are presented in the next subsessions  
 
 
2.1 The core of the LSA machine 
Ôhe core of the LSA Machine is based on depth-
two threshold circuits. Each layer has a number of 
depth-two threshold circuits. The input gates 
calculate hypotheses of the type: 
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where n is the number of input attributes of the 
domain, wi and ϑ are the input weights and 
threshold value of the perceptron respectively, 
calculated by the perceptron algorithm [24] and xi 
is the input value of the attribute i. The output gates 
of the threshold circuit are collected by a voting 
function that determines the output of the depth-
two circuit. The network in the first layer consists 
of v voting functions each with P threshold circuits.  

Simulated Annealing to be explicitly 
defined [1], requires:  a configuration space that 
defines the search space, an objective function that 
defines the function to be optimized either by 
maximizing or by minimizing this function, a 
transition mechanism that generates our new 
hypothesis to be examined and defines the 
acceptance criteria for the new hypotheses and a 
cooling schedule which controls the annealing 
procedure.  

The configuration space is defined by the 
set of linear threshold functions )(xf r
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The objective function is the number of 

misclassified examples fS∆ from the sample set S 
calculated by each linear threshold function.   
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where {-1,1}indicates a positive or negative 
example. The objective function then is determined 
by: 
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The problem of finding a linear threshold 
function that minimizes the number of 
misclassified vectors is a NP-hard problem [14]. 
Therefore heuristics should be applied in the 
training procedure. To compute our next 
hypotheses, the first layer of the circuit is computed 
by a combination of the Perceptron algorithm and 
the Logarithmic-cooling schedule with a heuristic 
of choosing the elements that are far away from 
being correctly classified. These elements are 
assigned higher probability for being our next 
hypotheses. To determine this a deviation function 
U(x) is constructed in the following way 
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where  
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      0,    otherwise. 
 
Thus preference is given to 

that fSx ∆∈},{ η that maximises the deviation (6). 
A new hypothesis is accepted if one of the 

following happens: a) it produces lower 
classification error to the objective function or b) it 
produces higher classification error to the objective 
function and at each annealing temperature a 
uniformly randomly selected sample ∈ρ  [0,1] is 
greater than 

)(/))()(( 1 ktwowo kke −−−
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where )(),( 1−kk wowo :the objective function of 
hypotheses k  and k-1, and t(k) the annealing 
temperature of the logarithmic cooling scheme. The 
logarithmic cooling scheme of the LSA machine is 
based on Hajek’s theorem [13].  
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Applying this feature to the LSA Machine we 
manage to use inhomogeneous markov chains of 
finite length to restrict the classification error. The 
temperature is lowered at every step implementing 
the idea to avoid premature convergence to local 
minima and escape from them with a probability 
that is lowered due time restricting the acceptance 
of new sub-optimal steps to take over time. 

The training is completed when the 
classification error is zero, i.e. all samples from the 
random sampleset are learned or after a predefined 
number of steps L.   
  
 
2.2 Basic learning methods of the LSA 
machine 
The learning method in the LSA machine requires 
that each perceptron is trained by a randomly 
selected training set. The LSA machine introduced 
a new method to compute the threshold circuits by 
performing an Epicurean-style learning procedure, 
where several independent hypotheses are 
calculated from randomly chosen sub-sets of the 

total training samples. Each threshold function in 
each layer is calculated from a random selection of 
positive Spos and negative Sneg samples out of the 
training set of positive and negative samples Tpos, 
Tneg available for that layer. 

|||| pospos TS ⋅= α (10) 

|||| negneg TS ⋅= β (11) 

where ∈βα,  [0,1]. The values of α and β, denote 
the number of random examples that each 
perceptron will be trained to learn with desirable 
zero or minimum error.  
 
 
 2.3 Extension of the LSA machine  

The entire network is shown in figure 1. 
The entire available dataset D is divided to three 
datasets (T1, T2, T). 

 
T1 U T2 U T =D   and  T1 ∩ T2 ∩ T=Ø (12) 

 
The first dataset (T1) consists of the 50% of the 
data and is used for training the first layer of the 
network. The training method is based on a random 
selection of S1 sample sets out of the T1 for 
training each threshold circuit. After training the 
first layer with the 50% of the data the weights are 
fixed and the layer is exposed to a new dataset T2 
of previously unseen examples, which are the 25% 
of the data D. This produces for every sample of T2 
a vector of length v plus the associated class c={-
1,1} of the sample  

 
New sample = [r1,r2,…..rv,c] (13) 

 
where r1, r2, ..rv the output of each depth-two 
threshold circuit in the first layer and are formed as: 
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The new samples from (13) are used for training h 
depth-two threshold circuits consisting of h voting 
functions with m threshold circuits each. In this 
way gates at different level are exposed to a 
learning procedure with different training data. The 
idea is to correct inaccuracies at the output gates of 
the first layer by using a different unseen training 
dataset. This learning procedure will increase the 
importance of the accurate first layer sub-circuits 
and decrease the importance of the inaccurate sub-
circuits. The training method is the same as in the 
first layer with randomly sampling S2 sample sets 
from the T2 dataset.  After training the perceptrons 
of the second layer the testing set of unseen  
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Figure 1: The Entire Network 
 
examples, which is the third dataset consisting of 
25% of the data D, are applied to the entire 
network. The outputs at first layer are collected and 
the class produced by the first layer is compared 
with the real class of the sample. The number of 
misclassified examples in first layer S∆ƒ1 is 

recorded. Each sample of the testset T after being 
exposed to the first layer produces a new testing 
sample of the type (13). The total number of the 
new samples is exposed to the second layer 
producing a number of S∆ƒ2 misclassified 
examples 



 
 
 

After training the second layer the 
remaining 25% of the data consisting the testset T 
is used for evaluation of the entire network.  In the 
evaluation phase each sample is exposed to layer 
one and layer two and at the end of the layer two a 

function∑
=

h

i
iR

1

collects the outputs of the h voting 

functions and determines whether the sample 
belongs to a positive or negative class. The 
misclassification function on the testset is the total 
error ε of the network. 

TSfS ∈∆= ,ε  (15) 
 
 

3 Results 
The application domain is the Winskonsin Breast 
Cancer Database (17). The Winsconsin Breast 
Cancer Database (WBCD) can be found at the UCI 
Repository http://www.ics.uci.edu/~mlearn/MLRep 
ository.html.  The WBCD database is the result of 
the efforts made at the university of Wisconsin 
Hospital for accurately diagnosing breast masses 
based solely on a Fine Needle Aspiration  (FNA) 
test. There are 9 input features in the WBCD 
database. WBCD is a binary classification problem. 
The output is either a benign case (positive 
example) or a malignant case (negative examples) 
The data set consists of 699 samples. 16 samples 
have missing values, and they are discarded in this 
work in a pre-processing step. The remaining 683 
data are divided to 444 benign (Positive examples) 
and 239 malignant cases (Negative examples)  

The training samples used for training the 
network and testing the performance are divided to 
50% for training the first layer, 25% for producing 
equally sized new samples for training the second 
layer and 25% for testing the entire network. 
WBCD is considered a benchmark database for 
artificial intelligence systems. Researchers [2], 
[10], [11], [12], [15], [18], [21], [22], [23], [26], 
[27], [28], [29], [30], that have tackled the database 
have provided the literature with results ranging 
from 90% [11], to 98.24% [26], on the testing data. 
Classification accuracy by using the LSA machine 
in [5] and [17] is 98.8%.  

In our approach the values of α=β=0.14 , 
L=10000 are selected. The value of Γ is kept for 
each layer to be (Tpos+ Tneg)/2, of the randomly 
selected training samples. 

The average total error ε(average) is 
calculated after running the program for a 
considerable number of times.  
  

(P,v,m,h) (11,5,11,3) (15,5,15,3) (20,5,20,3) 
ε(average) 
Layer 1 

3.0 3.0 2.9 

Total 
Errors 
Layer 1 

1.7% 1.7% 1.7% 

ε(average) 
Layer 2 

2.5 2.5 2.4 

Total 
Errors 
Layer 2 

1.5% 1.5% 1.4% 

Table 1: Results of classification errors in Layer1 
and Layer 2 

Comparing the outputs from Layer1 and Layer2 in 
Table 1 an important conclusion is that the 
extension to Layer 2 improves the quality of the 
classification error. Table2 shows the results of the 
original LSA machine, which consists of only one 
layer and where the 75% of the data are used for 
training the depth-two threshold functions.  

(P,v) (11,5) (15,5) (20,5) 
ε(average) 2.1 2.1 2.0 
Total Errors 1.2% 1.2% 1.1% 
Table 2: Results by the original LSA machine 

The original LSA machine performs better 
than extending the LSA machine to Layer 2. This 
leads to the conclusion that for the particular 
database the quality of results in the first layer 
depends very much on the number of available 
examples for training the first layer. The second 
layer improves the result of the first layer, however 
the improvement doesn’t reach the result gained by 
using more examples for training the first layer. 

 Changing the 50%,25%,25% proportion of 
the sample sets T1,T2,T to a proportion of 
65%,15%,25% the results shown in Table 3 
indicate better classification error in layer 1, which 
is closer to the origin LSA machine classification 
error, however the layer 2 with fewer examples for 
training has a stable behavior of following the 
results of layer 1 
(P,v,m,h) (11,5,11,3) (15,5,15,3) (20,5,20,3) 
ε(average) 
Layer 1 

2.3 2.3 2.2 

Total 
Errors 
Layer 1 

1.3% 1.3% 1.3% 

ε(average) 
Layer 2 

2.3 2.3 2.2 

Total 
Errors 
Layer 2 

1.3% 1.3% 1.3% 

Table 3: Results of classification errors in Layer1 
and Layer 2 with T1=65,T2=15,T=25 



 
 
 

Interesting is that Layer 2 using fewer 
examples for training doesn’t increase the 
classification error that layer 1 outputs. 

The run time for the original LSA machine 
ranges from 240min to 900min, while the extension 
of the LSA machine almost doubles this running 
time.  
 
 
4 Discussion 
 
We have present an extension of the LSA machine 
by adding an extra layer and by dividing the 
training set to train the new layer. The novelty in 
the training procedure is that the new layer is not 
trained by the splitted samples but from tuples that 
consists of vectors, which are the outputs of the 
first layer when the splitted dataset is exposed to 
the first layer. This provided us with samples that 
are related with the quality of output of the first 
layer. Training of the second layer enables to fix 
inaccuracies of the first layer and this was 
displayed by the results. This is an important 
conclusion of this work. 
 

However, the impact of depth of circuits is 
under question for this particular dataset as the 
small improvements that it offers is faded by the 
better results on layer one where the datasets are 
not divided for extra layer training. For this 
particular dataset the number of examples in the 
first layer is considerable more important than the 
improvements offered by a second layer training. 
However, it is very important that the extension to 
next layer improves the result of the previous layer, 
providing a reasonable amount of data. Therefore 
more research on other larger datasets is needed. 
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