

On the Evaluation of Dividing Samples for Training an Extended Depth
LSA Machine

ANDREAS ALBRECHT

Computer Science Department
University of Hertfordshire
Hatfield, Herts AL10 9AB

UK

GEORGIOS LAPPASÔ
Computer Science Department

University of Hertfordshire
Hatfield, Herts AL10 9AB

UK

Abstract: A classic problem in neural networks is the depth investigation of the network. Is there any potential
benefit when training depth-one threshold circuits by adding extra layers and further training them? This
question is investigated in a powerful recently introduced artificial intelligence system, called the Logarithmic
Simulated Annealing (LSA) machine, that combines the Simulated Annealing Algorithm with a Logarithmic
cooling schedule and the classical perceptron algorithm. The first and second layers are trained with the LSA
machine learning algorithm. For the learning procedure 50% of the available data are used for training the first
layer. The first layer consists of v voting functions of P threshold circuits each one. The next 25% are displayed
to the first layer and the outputs of the first layer are producing new samples of length v that are used for
training the second layer. The remaining 25% are used for testing the entire network. The main idea is to
smooth in the second layer the inaccuracies of the first layer, by training the second layer to evaluate the
significance of each output gate of the first layer. Results of the depth investigation reveal that the second layer
can produce slightly better results; however the cost of using fewer examples for training the first layer is also
considerable.

Key-Words: Simulated Annealing, Optimisation, Perceptron Algorithm, Threshold Circuits, Classification,
Machine Learning

1 Introduction
The LSA machine, introduced in [9], is an
implementation of a learning algorithm that derives
from the combination of the Logarithmic Simulated
Annealing algorithm [1], [16], with the classical
perceptron algorithm [20], [24]. Simulated
Annealing is in our days a popular active research
area [25]. The Simulated Annealing method is a
feasible method that can successfully handle NP-
hard problems, and is the method chosen in LSA
machine for the optimization strategy.

ÔAlso:
Department of Public Relations and Communication
TEI of Western Macedonia, Kastoria Campus, GR52100 Kastoria,
GREECE

The main idea of the LSA Machine is to

use a logarithmic cooling schedule to control the
unrestricted increase of the classification error on
training samples caused by the Perceptron
algorithm [4]. The search is guided by logarithmic
simulated annealing (LSA), while the
neighbourhood is defined by the Perceptron
algorithm. The logarithmic cooling schedule
applies an inhomogeneous Markov chain, whereas
in most applications of Simulated Annealing
homogeneous Markov Chains are used as the
underlying model. Homogeneous Markov Chains
are based on an infinite number of transitions at
fixed temperatures, leading on the one hand to
optimal solutions, however on the other hand to

unrealistic real world problems because of the
infinite time involved in the algorithm. Therefore
the LSA machine, based on inhomogeneous
Markov Chains approximates the optimal solutions.

According to Hajek’s theorem [13]
approximations to optimal solution are guaranteed
under certain conditions. However, to verify
whether Hajek’s conditions are valid for a given
configuration space is often very difficult.
Nevertheless, in the various modifications of the
LSA machine, there are convincing results that this
approach approximates the optimal solution even if
it unlikely that the configuration space meets the
Hajeks convergence conditions. The run-time steps
sufficiency to approach the minimum value of the
objective function with probability 1-ε is [3]:

)/1(log)1(εγ On + (1)
Where ã depends on the maximum Ã of the escape
depth of local minima within the underlying energy
landscape. Placement problem was used in this
approach, however this result is independent of the
problem domain and can be applied to various
optimization problems The LSA machine
outperforms the classical perceptron algorithm by
15% when the sample set is sufficiently large [3].

Various modifications of the LSA Machine
have been applied to classify image data (CT image
classification) [4], [6], [7], to gene-expression data
analysis [5], [8], and to medical problems [17]. In
this work we investigate an extension of the
original LSA Machine by adding an extra layer and
a new learning method for training the second
layer. The application domain is the Winskonsin
Breast Cancer Database [17], a popular binary
classification domain tackled by many researches
[2], [10], [11], [12],[15], [18], [21], [22], [23], [26],
[27], [28], [29], [30].

2 Problem Formulation
The core of the LSA machine and the learning
methods are presented in the next subsessions

2.1 The core of the LSA machine
Ôhe core of the LSA Machine is based on depth-
two threshold circuits. Each layer has a number of
depth-two threshold circuits. The input gates
calculate hypotheses of the type:

.)(1 ϑ≥⋅= ∑ =
n
i ii xwxf

r
 (2)

where n is the number of input attributes of the
domain, wi and ϑ are the input weights and
threshold value of the perceptron respectively,
calculated by the perceptron algorithm [24] and xi
is the input value of the attribute i. The output gates
of the threshold circuit are collected by a voting
function that determines the output of the depth-
two circuit. The network in the first layer consists
of v voting functions each with P threshold circuits.

Simulated Annealing to be explicitly
defined [1], requires: a configuration space that
defines the search space, an objective function that
defines the function to be optimized either by
maximizing or by minimizing this function, a
transition mechanism that generates our new
hypothesis to be examined and defines the
acceptance criteria for the new hypotheses and a
cooling schedule which controls the annealing
procedure.

The configuration space is defined by the
set of linear threshold functions)(xf r

∑
=

≥==
n

i
fii xwxfxfF

1

}.)(:)({ θ
rr

 (3)

The objective function is the number of

misclassified examples fS∆ from the sample set S
calculated by each linear threshold function.

}}1,1{),,..,,(:,{ 21 −∈== ηη andxxxxxS n

rr
(4)

where {-1,1}indicates a positive or negative
example. The objective function then is determined
by:

fxfxfS θη <=∆)(:,{
rr

and +=η

or fxf θ≥)(
r

and }−=η (5)

The problem of finding a linear threshold
function that minimizes the number of
misclassified vectors is a NP-hard problem [14].
Therefore heuristics should be applied in the
training procedure. To compute our next
hypotheses, the first layer of the circuit is computed
by a combination of the Perceptron algorithm and
the Logarithmic-cooling schedule with a heuristic
of choosing the elements that are far away from
being correctly classified. These elements are
assigned higher probability for being our next
hypotheses. To determine this a deviation function
U(x) is constructed in the following way

∑
∆∈

=

fSx

xu
xuxU

r

r

r

)(
)(

)((6)

where

),(xf r− if fxf θ<)(

r
and =η 1

u(x)=)(xf r
, if fxf θ≥)(

r
and −=η 1 (7)

 0, otherwise.

Thus preference is given to

that fSx ∆∈},{ η that maximises the deviation (6).
A new hypothesis is accepted if one of the

following happens: a) it produces lower
classification error to the objective function or b) it
produces higher classification error to the objective
function and at each annealing temperature a
uniformly randomly selected sample ∈ρ [0,1] is
greater than

)(/))()((1 ktwowo kke −−−
(8)

where)(),(1−kk wowo :the objective function of
hypotheses k and k-1, and t(k) the annealing
temperature of the logarithmic cooling scheme. The
logarithmic cooling scheme of the LSA machine is
based on Hajek’s theorem [13].

,...}1,0{),2ln(/)(∈+Γ= zzzt (9)

Applying this feature to the LSA Machine we
manage to use inhomogeneous markov chains of
finite length to restrict the classification error. The
temperature is lowered at every step implementing
the idea to avoid premature convergence to local
minima and escape from them with a probability
that is lowered due time restricting the acceptance
of new sub-optimal steps to take over time.

The training is completed when the
classification error is zero, i.e. all samples from the
random sampleset are learned or after a predefined
number of steps L.

2.2 Basic learning methods of the LSA
machine
The learning method in the LSA machine requires
that each perceptron is trained by a randomly
selected training set. The LSA machine introduced
a new method to compute the threshold circuits by
performing an Epicurean-style learning procedure,
where several independent hypotheses are
calculated from randomly chosen sub-sets of the

total training samples. Each threshold function in
each layer is calculated from a random selection of
positive Spos and negative Sneg samples out of the
training set of positive and negative samples Tpos,
Tneg available for that layer.

|||| pospos TS ⋅= α (10)

|||| negneg TS ⋅= β (11)

where ∈βα, [0,1]. The values of α and β, denote
the number of random examples that each
perceptron will be trained to learn with desirable
zero or minimum error.

 2.3 Extension of the LSA machine

The entire network is shown in figure 1.
The entire available dataset D is divided to three
datasets (T1, T2, T).

T1 U T2 U T =D and T1 ∩ T2 ∩ T=Ø (12)

The first dataset (T1) consists of the 50% of the
data and is used for training the first layer of the
network. The training method is based on a random
selection of S1 sample sets out of the T1 for
training each threshold circuit. After training the
first layer with the 50% of the data the weights are
fixed and the layer is exposed to a new dataset T2
of previously unseen examples, which are the 25%
of the data D. This produces for every sample of T2
a vector of length v plus the associated class c={-
1,1} of the sample

New sample = [r1,r2,…..rv,c] (13)

where r1, r2, ..rv the output of each depth-two
threshold circuit in the first layer and are formed as:

ri=∑
=

P

xfi
1

)(
ι

r
 (14)

The new samples from (13) are used for training h
depth-two threshold circuits consisting of h voting
functions with m threshold circuits each. In this
way gates at different level are exposed to a
learning procedure with different training data. The
idea is to correct inaccuracies at the output gates of
the first layer by using a different unseen training
dataset. This learning procedure will increase the
importance of the accurate first layer sub-circuits
and decrease the importance of the inaccurate sub-
circuits. The training method is the same as in the
first layer with randomly sampling S2 sample sets
from the T2 dataset. After training the perceptrons
of the second layer the testing set of unseen

X1, .. XN [1] 1 ……………T1 X1, .. XN [T1]

 Random1 S1 …… Random1 Sp Randomv S1 ….. Randomv Sp

Layer 1
1 .….. P 1 …. P

 1 …………… v

 r1………rv, c [1] 1 ……..………T2 r1………rv, c [T2]

 Random1 S1 ………. Random1 Sm …..Randomh S1 ….. Randomh Sm

 Layer2

 1 ….. m ……… 1 m

 1 ……… h

 }1,1{1 −∈R }1,1{−∈Rh

 if∑
=

h

i
iR

1

<0 then class=negative

 else class=positive

Figure 1: The Entire Network

examples, which is the third dataset consisting of
25% of the data D, are applied to the entire
network. The outputs at first layer are collected and
the class produced by the first layer is compared
with the real class of the sample. The number of
misclassified examples in first layer S∆ƒ1 is

recorded. Each sample of the testset T after being
exposed to the first layer produces a new testing
sample of the type (13). The total number of the
new samples is exposed to the second layer
producing a number of S∆ƒ2 misclassified
examples

After training the second layer the
remaining 25% of the data consisting the testset T
is used for evaluation of the entire network. In the
evaluation phase each sample is exposed to layer
one and layer two and at the end of the layer two a

function∑
=

h

i
iR

1

collects the outputs of the h voting

functions and determines whether the sample
belongs to a positive or negative class. The
misclassification function on the testset is the total
error ε of the network.

TSfS ∈∆= ,ε (15)

3 Results
The application domain is the Winskonsin Breast
Cancer Database (17). The Winsconsin Breast
Cancer Database (WBCD) can be found at the UCI
Repository http://www.ics.uci.edu/~mlearn/MLRep
ository.html. The WBCD database is the result of
the efforts made at the university of Wisconsin
Hospital for accurately diagnosing breast masses
based solely on a Fine Needle Aspiration (FNA)
test. There are 9 input features in the WBCD
database. WBCD is a binary classification problem.
The output is either a benign case (positive
example) or a malignant case (negative examples)
The data set consists of 699 samples. 16 samples
have missing values, and they are discarded in this
work in a pre-processing step. The remaining 683
data are divided to 444 benign (Positive examples)
and 239 malignant cases (Negative examples)

The training samples used for training the
network and testing the performance are divided to
50% for training the first layer, 25% for producing
equally sized new samples for training the second
layer and 25% for testing the entire network.
WBCD is considered a benchmark database for
artificial intelligence systems. Researchers [2],
[10], [11], [12], [15], [18], [21], [22], [23], [26],
[27], [28], [29], [30], that have tackled the database
have provided the literature with results ranging
from 90% [11], to 98.24% [26], on the testing data.
Classification accuracy by using the LSA machine
in [5] and [17] is 98.8%.

In our approach the values of α=β=0.14 ,
L=10000 are selected. The value of Γ is kept for
each layer to be (Tpos+ Tneg)/2, of the randomly
selected training samples.

The average total error ε(average) is
calculated after running the program for a
considerable number of times.

(P,v,m,h) (11,5,11,3) (15,5,15,3) (20,5,20,3)
ε(average)
Layer 1

3.0 3.0 2.9

Total
Errors
Layer 1

1.7% 1.7% 1.7%

ε(average)
Layer 2

2.5 2.5 2.4

Total
Errors
Layer 2

1.5% 1.5% 1.4%

Table 1: Results of classification errors in Layer1
and Layer 2

Comparing the outputs from Layer1 and Layer2 in
Table 1 an important conclusion is that the
extension to Layer 2 improves the quality of the
classification error. Table2 shows the results of the
original LSA machine, which consists of only one
layer and where the 75% of the data are used for
training the depth-two threshold functions.

(P,v) (11,5) (15,5) (20,5)
ε(average) 2.1 2.1 2.0
Total Errors 1.2% 1.2% 1.1%
Table 2: Results by the original LSA machine

The original LSA machine performs better
than extending the LSA machine to Layer 2. This
leads to the conclusion that for the particular
database the quality of results in the first layer
depends very much on the number of available
examples for training the first layer. The second
layer improves the result of the first layer, however
the improvement doesn’t reach the result gained by
using more examples for training the first layer.

 Changing the 50%,25%,25% proportion of
the sample sets T1,T2,T to a proportion of
65%,15%,25% the results shown in Table 3
indicate better classification error in layer 1, which
is closer to the origin LSA machine classification
error, however the layer 2 with fewer examples for
training has a stable behavior of following the
results of layer 1
(P,v,m,h) (11,5,11,3) (15,5,15,3) (20,5,20,3)
ε(average)
Layer 1

2.3 2.3 2.2

Total
Errors
Layer 1

1.3% 1.3% 1.3%

ε(average)
Layer 2

2.3 2.3 2.2

Total
Errors
Layer 2

1.3% 1.3% 1.3%

Table 3: Results of classification errors in Layer1
and Layer 2 with T1=65,T2=15,T=25

Interesting is that Layer 2 using fewer
examples for training doesn’t increase the
classification error that layer 1 outputs.

The run time for the original LSA machine
ranges from 240min to 900min, while the extension
of the LSA machine almost doubles this running
time.

4 Discussion

We have present an extension of the LSA machine
by adding an extra layer and by dividing the
training set to train the new layer. The novelty in
the training procedure is that the new layer is not
trained by the splitted samples but from tuples that
consists of vectors, which are the outputs of the
first layer when the splitted dataset is exposed to
the first layer. This provided us with samples that
are related with the quality of output of the first
layer. Training of the second layer enables to fix
inaccuracies of the first layer and this was
displayed by the results. This is an important
conclusion of this work.

However, the impact of depth of circuits is
under question for this particular dataset as the
small improvements that it offers is faded by the
better results on layer one where the datasets are
not divided for extra layer training. For this
particular dataset the number of examples in the
first layer is considerable more important than the
improvements offered by a second layer training.
However, it is very important that the extension to
next layer improves the result of the previous layer,
providing a reasonable amount of data. Therefore
more research on other larger datasets is needed.

References:

[1] E.H.L.Aarts, and J.H.M. Lenstra, Local Search
in Combinatorial Optimization, Wiley&Sons, 1998.
[2] J. Abonyi, and J.A. Roubos, Structure
Identification of Fuzzy Classifiers, 5th online World
Conference on Soft Computing in Industrial
Applications (WSCS), Sept 4-18, 2000.
[3] A. Albrecht, S.K. Cheung, K.S. Leung, C.K.
Wong. On the convergence of inhomogeneous
Markov Chains approximating equilibrium
placements of flexible objects. Computational
Optimization and Applications, 19:179-208, 2001
[4] A. Albrecht, E. Hein, K. Steinhofel, M. Taupitz,
and C.K. Wong. Bounded-Depth Threshold
Circuits for Computer-Assisted CT Image

Classification. Artificial Intelligence in Medicine,
24(2):177-190, 2002.
[5] A. Albrecht, G. Lappas, S.A.Vinterbo, C.K.
Wong, and M. Ohno-Machado, Two Applications
of the LSA Machine, Proceedings of the
International Conference On Neural Information
Processing (ICONIP ’02), Vol 1, pp184-189, 2002.
[6] A. Albrecht, M. J. Loomes, K. Steinhofel, and
M. Taupitz, Adaptive Simulated Annealing for CT
Image Classification, Pattern Recognition and
Artificial Intelligence, 16(5), 2002.
[7] A. Albrecht, K. Steinhofel, M. Taupitz, and
C.K.Wong, Logarithmic Simulated Annealing for
Computer-Assisted X-ray Diagnosis. Artificial
Intelligence in Medicine, 22(3):249-260, 2001.
[8] A. Albrecht, S.A.Vinterbo, C.K. Wong, and
L.Ohno-Machado, A Simulated Annealing and
Resampling Method for Training Perceptrons to
Classify Gene-Expression Data. Proceeding of The
International Conference on Artificial Neural
Networks (ICANN ’02), Lecture Notes in Computer
Science Series, Springer-Verlag, 2002
[9] A. Albrecht, and C.K. Wong, Combining the
Perceptron Algorithm with Logarithmic Simulated
Annealing. Neural Processing Letters, 14(1):75-83,
2001.
[10] A. Cannon, L.J. Cowen, and C.E. Priebe,
Approximate Distance Classification, Computing
Science and Statistics 30, 1998.
[11] D. Chiang, W. Chen, Y. Wang, and L. Hwang,
Rules Generation from the Decision Tree, Journal
of Information Science and Engineering, 17:325-
339, 2001.
[12] N. Friedman, D. Geiger, and N. Goldszmidt,
Bayesian Network Classifiers, Machine Learning,
Vol 29, 131-163. Kluwer, Boston, 1997
[13] B. Hajek Cooling Schedules for Optimal
Annealing, Mathem.of Operations Research,
13:311-329, 1988.
[14] K.U. Höffgen, H. U. Simon, K.S. van Horn.
Robust Trainability of Single Neurons. Journal of
Computer and System Sciences, 50:114-125, 1995.
[15] N. Japkowicz, Supervised Learning with
Unsupervised Output Seperation, In Proceedings of
the IASTED International Conference on Artificial
Intelligence and Soft Computing (ASC2002), pp.
338-343, 2002.
[16] S.Kirkpatrick, C.D. Gelat,Jr., and M.P.
Vecchi, Optimization by Simulated Annealing.
Science, 220:671-680, 1983.
[17] G. Lappas, V. Ambrosiadou, Binary and
Multicategory Classification accuracy of the LSA
Machine, In Proceedings of the International
Conference on Computational Methods in Science
and Engineering, (ICCMSE2003),pp.340-345, 2003

[18] C.G. Looney, Interactive clustering and
merging with a new fuzzy expected value, Pattern
Recognition 35:2413-2423, Pergamon, 2001.
[19] C.J. Mertz and P.M. Murphy, UCI Repository
of Machine Learning Databases.
http://www.ics.uci.edu/~mlearn/MLRepository.htm
l, (1996).
[20] M.L.Minsky, and S.A. Papert, Perceptrons.
MIT Press, Cambridge, Mass., 1969.
[21] M. Madden, Evaluation of the Performance of
the Markov Blanket Bayesian Classifier Algorithm,
Technical Report No. NUIG-IT-011002,
Department of Information Technology, National
University of Ireland, Galway, 2002.
[22] D. Nauck, and R. Kruse, Obtaining
interpretable fuzzy classification rules from
medical data, Artificial Intelligence in Medicine,
vol. 16, pp149-169, 1999.
[23] C.A. Pena-Reyes, and M. Sipper, Fuzzy CoCo:
A Cooperative Coevolutionary Approach to Fuzzy
Modeling, IEEE Transactions on Fuzzy Systems,
Vol 9, Number 5, p.p. 727-737, 2001.
[24] F. Rosenblatt. Principles of Neurodynamics.
Spartan Books, New York, 1962.
[25] P. Salamon, P. Sibani, and R. Frost, Facts,
Conjectures, and Improvements for Simulated
Annealing, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 2002.
[26] R. Setiono, Generating concise and accurate
classification rules for breast cancer diagnosis.
Artificial Intelligence in Medicine, 18(3), p.p 205-
217, 2000.
[27] R. Setiono, and H. Liu, Neural-Network
Feature Selector, IEEE Transactions on Neural
Networks, 8(3): 654-659, 1997.
[28] I. Taha, and J. Ghosh, Characterization of the
Wisconsin Breast cancer Database Using a Hybrid
Symbolic-Connectionist System,Tech. Rep. UT-
CVIS-TR-97-007, Center for Vision and Image
Sciences, University of Texas, Austin, 1997
[29] W.H. Wolberg, and O.L. Mangasarian.
Multisurface Method of Pattern Separation for
Medical Diagnosis Applied to Breast Cytology.
Proceedings of the National Academy of Sciences,
U.S.A., Vol. 87, pages 9193-9196, 1990.
[30] J. Zhang, Selecting Typical instances in
Instance-Based Learning. Proceedings of the Ninth
International Machine Learning Workshop,
Aberdeen, Scotland. Morgan-Kaufmann, San
Mateo, Ca, 470-479, 1992.

