
A Conservative Approach to Perceptron Learning

RAMASUBRAMANIAN G. SUNDARARAJAN1ASIM K. PAL2

1 Information & Decision Technologies Lab
GE Global Research

Plot 122, EPIP Phase 2, Hoodi Village, Whitefield Road, Bangalore 560066
INDIA

2 Professor of Information Systems & Computer Science
Indian Institute of Management Calcutta

D. H. Road, Joka, Kolkata 700104
INDIA

Abstract: - In many real-life pattern recognition problems, it may be prudent to reject an example rather than run
the risk of a costly potential misclassification. Typically, the threshold for rejection is determined after the under-
lying classifier has been trained in order to minimize misclassification. In this paper, we present two algorithms
to train a hyperplane with a bandwidth for rejection, wherein both the classifier and the bandwidth are determined
simultaneously. Experimental results indicate that the hypothesis thus detrmined shows an improvement over its
liberal counterpart (the same perceptron, with zero bandwidth), and over a perceptron trained using the standard
perceptron learning rule, on which the rejection threshold is determined using Chow’s rule.

Key-Words: -Perceptron learning, rejection threshold, emdedded reject option

1 Introduction

The primary focus of learning theory has been on cases
wherein a learning algorithm outputs a prediction for
every test example. However, this may not always be
possible in real situations. In cases wherein a learning
algorithm encounters regions of high ambiguity, or pre-
viously unseen regions of the input space, it may not
have the confidence to make a prediction and may there-
fore prefer to reject the test example, i.e., not return a
prediction. In certain situations, such as when the loss
that might be incurred due to a wrong prediction is un-
acceptably high, conservatism may be a better policy.
This approach is referred to in this paper asconserva-
tive learning.

Let S = ((x1, y1), . . . (x`, y`)) be a labeled i.i.d.

sample drawn from an unknown but fixed joint distri-
bution F (x, y), x ∈ X, y ∈ Y = {1, . . . m}, where
m is the number of classes. A learning algorithmA
uses the sampleS to arrive at a hypothesish ∈ H,
which, in case a reject option is permitted, will output
h(x) ∈ {0} ∪ Y , where0 represents the reject option.
For pattern recognition problems, the simplest defini-
tion of L can be given as

L(x, y, h) =

0 if h(x) = y
γ if h(x) = 0
1 if h(x) 6= y, h(x) 6= 0

(1)

where0 < γ < 1 represents the cost of rejection. A
generalized version of this loss function can be written
as:

∗This work was done as part of the fellow (doctoral) program at IIM Calcutta

L(x, y, h) =

−ay if h(x) = y
cy if h(x) = 0
by if h(x) 6= y, h(x) 6= 0

(2)

whereay > 0, 0 ≤ cy < by.
The risk of the hypothesish, expressed as the expec-

tation of the lossL over the example space with respect
to the probability measureF , is given by:

R(h) =
∫

L(x, y, h) dF (x, y) (3)

The problem of learning with a reject option can
now be restated as one of finding

hopt = arg min
h(hp,θ)∈H

R(h) (4)

given a set of examplesS. The basic inductive prin-
ciple used to perform this task is Empirical Risk Mini-
mization (ERM), which states that the best choice of hy-
pothesis is the one that optimizes this risk for the given
set of examples.

Intuitively, we understand that the applicability of
the reject option depends on the confidence of the clas-
sifier in its prediction on a particular example. The ap-
propriate measure of confidence depends on the prob-
lem, the nature of the underlying classifier, and the ra-
tionale behind the rejection scheme (ie., ambiguity, dis-
tance etc.). In order to represent this hierarchy, we con-
sider a hypothesis with the reject option as being imple-
mented using two hypotheses - the underlying classifier
hp, which returns a prediction on every example, and
the rejection hypothesisθ, which returns a value of1 is
the example is to be rejected, and0 otherwise.

h(x) = (1 − θ(x, hp))hp(x) (5)

A simple example of this is a perceptron with a
bandwidth within which examples are rejected.

h(x, α) =

+1 if 〈x, ω〉 ≥ λ+1

−1 if 〈x, ω〉 ≤ −λ−1

Reject otherwise
(6)

whereα = (ω, λ), λ ≥ 0 reperesents the set of free
parameters to be optimized,〈·, ·〉 denotes inner product

andx = φ(x) is a feature vector formed from the in-
put vector. For example, a simple feature vector can
be formed by taking the input vectorx and augment-
ing it with an extra dimension always set to1, so as to
account for the intercept term in the perceptron equa-
tion. Alternatively, one may also representh in terms
of two parallel hyperplanes (characterized by two in-
tercepts, with the rest of the weight vector remaining
the same), rather than an intercept and two bandwidth
terms. Such a representation would directly character-
izeh instead of throughhp andθ.

The rejection in case ofh may be because the hy-
pothesis is considered too simple to be accurate, but
there isn’t enough data to validate a more complex hy-
pothesis. An alternative argument may also be that,
even if a hyperplane is sufficient, the number of exam-
ples considered may be too small to position the hyper-
plane accurately enough. Therefore, even for a linearly
separable sample, a good hypothesis may be one that al-
lows for some non-zero bandwidth on either side of the
hyperplane.

It is intuitive that solving the optimization problem
(4) with respect tohp andθ together would give a better
solution than finding the underlying classifierhp first,
and then finding the appropriateθ for that classifier. In
this paper, we present two methods to find bothθ and
hp together for the case whereinh is a hyperplane with
bandwidth as represented in equation (6).

2 Literature survey

Rejection of examples by a hypothesis is a fairly well-
explored part of learning, and many strategies are often
employed in practice to deal with such situations. Typi-
cally, the hypothesis is learnt from the examples without
an embedded reject option, and an appropriate rejection
threshold is set to operate on the strength of the output.
(In other words,hp andθ are learnt in sequence rather
than simultaneously.) The classical work in this regard
is by Chow, who analyzed the nature of the error-reject
curve, and proposed that, if the a posteriori class prob-
abilities are exactly known, the rejection threshold is
given by

T =
b − c

b + a
(7)

wherea is the gain from a correct classification,b is
the loss from a misclassification, andc is the loss from
rejection [1]. However, this rule does not prove optimal
in cases where there is significant overlap among the
different classes, and the estimated a posteriori proba-
bilities from the training data may not be accurate.

This risk is often mitigated by the use of voting
schemes on multiple classifiers. Where a single clas-
sifier is concerned, the issue of having multiple reject
thresholds for different classes has been explored; how-
ever, finding the optimal values for these thresholds can
be a non-trivial problem [2]. Other strategies include
using a differential cost function that reflects the conser-
vatism that may arise because misclassifying a positive
example may not have the same cost as misclassifying
a negative example.

Recently, there has been work on training a Support
Vector Machine (SVM) with an emdedded reject option,
i.e., hp andθ are trained simultaneously [3]. However,
while SVMs are known to provide good generalization
capabilities, they also take a much longer time to train.
Therefore, perceptrons with bandwidth provide a mid-
dle ground between the efficiency of the simple percep-
tron algorithm and the accuracy of SVMs.

There exist algorithms in the literature that build
on the classical perceptron algorithm by requiring the
hyperplane to classify with a certain predefined band-
width. More recent work has also focused on this prob-
lem, as evidenced by Krauth & Mezard’s Perceptron Al-
gorithm with Margins (PAM). This algorithm tries to
find the hyperplane such that all examples are classified
correctly with a bandwidth greater than a predefined
quantity. Enhancements of this algorithm, such as the
Perceptron Algorithm with Uneven Margins (PAUM)
explores the possibility of allowing for asymmetric but
fixed bandwidth on either side of the hyperplane [7].
The Approximate Large Margin Algorithm (ALMA)
allows for symmetric but dynamically changing mar-
gins based on the misclassification count [4]. However,
while the decision surface arrived at by these algorithms
takes a form similar to the one presented in this paper, it
does not take into account, the cost structure described
in equations (1) or (2).

In the context of the literature cited above, the algo-
rithm presented in this paper can be viewed as one of
training a perceptron with an embedded reject option

using class-related thresholds (implemented as asym-
metric bandwidth).

3 The conservative perceptron
learning rule (CPLR)

The algorithmic framework presented in this paper can
be summarized in the following steps:

Step 1 k = 0, ωk, λk random

Step 2 Repeat the following steps until convergence

2.1 k = k + 1

2.2 ωk+1 = ωk + ρω∆ωk

2.3 λk+1 = λk + ρλ∆λk

It remains for us to specify the rules by which∆ωk

and∆λk are to be determined. In this paper, we present
two algorithms that provide these rules.

3.1 CPLR 1

In this algorithm, both the weights and the bandwidths
are learnt through gradient descent on the same crite-
rion function. The criterion function is derived using
the following rationale: If we were to look at the hy-
pothesish as a couple of parallel hyperplanes, then the
distance of an example from the hypothesis would have
to account for the distance from both hyperplanes. For
a rejected/misclassified example, while one hyperplane
provides the distance with respect to correct classifica-
tion, the other hyperplane provides the distance with re-
spect to misclassification/rejection. Therefore, the cost
associated with example(xk, yk) can be written as:

J(xk, yk, αk) =

(ayk + cyk)τk

c − (byk − cyk)τk
r

if h(xk, αk) = 0
(ayk + byk)τk

c − (byk − cyk)τk
r

if h(xk, αk) 6= yk

(8)
where

τk
c = λk

yk − yk〈xk, ωk〉

τk
r = λk

−yk + yk〈xk, ωk〉

The learning rules are arrived at by gradient descent
on the criterion function described above.

∆ωk =

{
(ayk + byk)ykxk if h(x, α) = 0
(ayk + 2byk − cyk)ykxk if h(x, α) 6= y

(9)

∆λk
yk =

{
−(ayk + cyk) if h(x, α) = 0
−(ayk + byk) if h(x, α) 6= y

(10)

∆λk
−yk = (byk − cyk) (11)

3.2 CPLR 2

In this algorithm, we learn the orientation of the hyper-
planes (characterized by the weights and the intercept)
on the basis of the distance between the example and
hyperplane w.r.t. correct classification, weighted by the
appropriate relative cost.

The criterion function to be minimized for weight
learning is:

J(xk, yk, αk) =

{
(ayk + cyk)τk

c if h(xk, αk) = 0
(ay + by)τk

c if h(xk, αk) 6= yk

(12)
The learning rule for weights is given by gradient

descent on the above criterion function, as follows:

∆ωk =

{
(ayk + cyk)ykxk if h(xk, αk) = 0
(ayk + byk)ykxk if h(xk, αk) 6= yk

(13)
For learning the bandwidth, we examine the trade-

off between correctly classified and misclassified exam-
ples on the predicted and rejected regions. Here we
raise the question: what is therelevantset of examples
needed for training? Since our interest is in the trade-off
between rejection and classification (correct or wrong),
the examples which are correctly classified and beyond
the region of misclassified examples do not affect the
trade-off in any way. The rationale for this statement is
that the bandwidth can be increased to cover the most
misclassified example, thereby achieving perfect classi-
fication on the predicted set, and any further increase in

the bandwidth would not improve the solution. There-
fore, on the predicted region, we constrain the learning
rule to operate on examples whose net input〈x, ω〉 is
less than or equal to:

ξk
y (ωk+1) = max

sgn(〈x,ωk+1〉) 6=y
|y〈x, ωk+1〉| (14)

where this maximum is computed over the training
sample. The bandwidth parameters are learnt in batch
mode, on the constrained region of the example space
as described by equation (14). The learning rule for the
bandwidth parameters can be viewed in the following
manner: On both the predicted and the rejected regions
of the space, we must gain more than we lose, on the
whole. Additionally, we impose the constraint that the
predicted region can only make a positive bandwidth
correction, whereas the rejected region can only make a
negative bandwidth correction. The rationale for this
constraint is that the bandwidth correction calculated
on the predicted region does not take into account the
trade-off in the rejected region, and vice-versa.

The method of calculation for the bandwidth correc-
tion on one side,∆λk

+1, is given here. The same method
is to be followed on the other side as well.

Let the relevant predicted regionXk(p)
+1 be defined

as:

X
k(p)
+1 (ωk+1, λk

+1) = {x|λk
+1 ≤ 〈x, ωk+1〉 ≤ ξk

−1(ω
k+1)}

(15)
Let p1 andp2 be the number of correctly classified

examples and wrongly classified examples inX
k(p)
+1 re-

spectively. The bandwidth correction for the predicted
region on that side of the hyperplane is given by:

∆λ
k(p)
+1 =

1
p1 + p2

(p2(b−1 − c−1) − p1(a+1 + c+1))

(16)
The bandwidth correction for the rejected region

∆λ
k(r)
+1 is similar to that given in equation (16), except

that the trade-off is in the opposite direction, and there is
no constraintξk

−1 applicable on the rejected region. The
eventual bandwidth correction is calculated according
to the following equation:

∆λk
+1 = max(∆λ

k(p)
+1 , 0) + min(∆λ

k(r)
+1 , 0) (17)

The bandwidth correction rules described here have
been given for the case of asymmetric bandwidth; the
same rules can be applied to the case of symmetric
bandwidth as well, with the only modification being that
the correction due to the predicted and rejected regions
are calculated using examples on both sides of the hy-
perplane together.

3.3 Convergence

One of the desirable properties of a training rule for a
perceptron is that, on a linearly separable training sam-
ple, it should converge to a solution that perfectly clas-
sifies the sample. In order to achieve convergence for
the two CPLR versions described above, we employ the
following procedure while implementing the algorithm:
After every weight learning step, we check if the liberal
hyperplane has converged to a separable solution. If it
has, then we freeze the weights and continue only with
the bandwidth learning until all examples are correctly
classified. For CPLR1, we also set∆λk

−yk = 0 in order
to ensure that there is only a decrease in bandwidth in
each step.

By an extension of Novikoff’s convergence proof
for the perceptron algorithm [5], it can be proved that, if
the bandwidth parameter is restricted to remain within
upper bounds(λ̄−1, λ̄+1), both versions of the CPLR
converge to a separating solution within a finite number
of iterations.

4 Experimental results

The two versions of the algorithm presented in Sec-
tion 3 have been tried out on the Pima Indians Diabetes
benchmark data set. This dataset was taken from the UC
Irvine machine learning data repository. The prediction
problem here is to determine whether or not a patient
has diabetes, given a set of 8 numeric attributes. There
were 768 examples in the data set, of which 568 were
used for training and 200 for testing. In order to bench-
mark these algorithms, we compare them against a per-
ceptron trained using the standard perceptron learning

rule (PLR), upon which a threshold was applied using
Chow’s rule.

We randomly split the data into training and test sets
10 times, and run the CPLR and PLR on the training
set. Since both algorithms perform a local descent on
the criterion function, on each training-test split, we run
the algorithm many times and choose the test set result
corresponding to the best training set result obtained, in
order to escape the problem of being trapped in bad lo-
cal minima. Then we take the median result obtained
across the 10 training-test splits, as representative of the
performance of the algorithm.

For this experiment, we considered symmetric costs
for both classes; therefore, the cost structure can be
characterized simply by the rejection cost0 < γ < 1,
vis-a-vis a0− 1 loss function for the underlying classi-
fier. The two algorithms were run for values ofγ vary-
ing between0.1 and0.5. For γ ≥ 0.5, application of
Chow’s threshold produces zero bandwidth; however,
we also find that in most cases, the best solution of
CPLR also produces a zero bandwidth hyperplane when
γ > 0.5. Forγ ≤ 0.5, CPLR consistently outperforms
its liberal counterpart.

The result of this experiment is depicted in the fig-
ure below. It can be seen that the performance of the
perceptron algorithm with Chow’s rule is fairly stable
across values ofγ, as is to be expected. However, the
performance if CPLR seems to be related to the cost of
rejection. The experimental results seem to indicate that
CPLR performs better when there is more gain to be had
from rejection.

4.1 Confidence Bounds

Here, we discuss some confidence bounds for compar-
ing the performance of a conservative hypothesis (ar-
rived at by CPLR or any other method) with its liberal
counterpart. The method applied here is an extension of
the one described by Vapnik & Bottou [8].

The hypothesis obtained by CPLR can be compared
with its liberal counterpart on a validation set, and cho-
sen if it exhibits an improvement in the net lossL. It is
intuitive that if this improvement is observed, it would
be due to the fact that the net loss of the liberal hypoth-
esis on the rejected region is greater than the cost of
rejection. While empirical evidence suggests that we
accept the conservative hypothesis, we wish to be able
to bound the probability that the actual error rate on the
rejected region (see equation) does not exceed the re-
jection cost. We shall present here, the calculation for
the case where the costs are symmetric. This can be
extended to the asymmetric cost situation.

Let `1 be the number of rejected examples that are
correctly classified by the liberal hypothesis, and`2 be
the number of rejected examples that are misclassified
by the liberal hypothesis. From the Chernoff-Hoeffding
bounds [6], we get:

Pr{ `2

`1 + `2
− µ > ε} < e−2ε2(`1+`2) (18)

whereµ is the expected error rate on the rejected
region. By settingε = `2/(`1 + `2) − γ, we get the
required confidence bound.

5 Scope for further work

The utility of a conservative approach to learning is de-
termined by the type of problem being approached. This
work describes a simple method for quantifying that
utility and optimizing it locally using a linear separator.
The algorithms described here have shown promising
results on a benchmark data set, thereby suggesting the
utility of further exploration along these lines.

Generalized versions, such as modeling the output
as a real-valued variable, and the application thereof, of
a smoothed version of the gain function cen be tried.
This can then be used to extend the method to train

multilayer perceptrons with an embedded reject option.
Also, the SVM formulation with an embedded reject
option described by Fumera & Roli can be generalized
to account for asymmetric bandwidth and cost [3]. Opt-
mizing the bandwidth with respect to the sample size
can also be explored. Another area that can be studied
is the trade-off between conservatism and complexity
of the hypothesis class. A hypothesis may choose to
be conservative if it finds that the problem is too com-
plex to handle. The principle of conservatism can there-
fore be used to develop robust constructive algorithms,
wherein the complexity is increased on local regions
where the simpler hypothesis remains conservative.

References

[1] C. K. Chow, On optimum recognition error and re-
ject trade-off, IEEE Transactions on Information
Theory, vol. 16, pp. 41–46, 1970.

[2] G. Fumera and F. Roli, Multiple reject thresholds
for improving classification reliability, Univ. of Cal-
gary, Tech. Rep., 1999.

[3] G. Fumera and F. Roli, Support vector machines
with embedded reject option, inPattern Recogni-
tion with Support Vector Machines - First Inter-
national Workshop, Proceedings, S.-W. Lee and
A. Verri, Eds. Springer, 2002.

[4] C. Gentile, A new approximate maximal margin
classification algorithm,Journal of Machine Learn-
ing Research, vol. 2, 2001.

[5] M. H. Hassoun,Fundamentals of Artificial Neural
Networks. MIT Press, 1995.

[6] W. Hoeffding, Probability inequalities for sums of
bounded random variables,Journal of the American
Statistical Association, vol. 58, pp. 13–30, 1963.

[7] Y. Li, H. Zarazoga, R. Herbrich, J. Shawe-Taylor,
and J. Kandola, The perceptron algorithm with un-
even margins, NeuroCOLT, Tech. Rep., 2002.

[8] V. N. Vapnik and L. Bottou, Local learning algo-
rithms,Neural Computation, vol. 4, no. 6, pp. 888–
900, 1992.

