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Abstract: - We present an FPGA based architecture of a digital acceleration platform for the simulation of spiking
neurons, called Spiking Neural Network Emulation Engine (SEE), that is capable to account for up to 219 neurons
with more than 3·103 weights each. This distributed memory architecture tackles the main bottle-neck of reduced
memory bandwidth during the simulation of large networks of spiking neurons. With this approach an effective
parallelisation of neuron modelling is achieved by providing multiple channels to the weight memory. Especially,
the consideration of dynamical synapses where synaptic weights have to be adapted throughout the whole simu-
lation time benefit from the proposed SEE architecture. The targeted programmable neuron model utilised by SEE
is based on synaptic weights with several adaptation rules. It is evaluated that the currently implemented numer-
ical integration method which is necessary for the neuron state computation can be accelerated by a factor of more
than 100 compared to a software implementation running on a stand-alone PC.
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1   Introduction
Spiking neural networks (SNNs) or pulse-coded neu-
ral networks (PCNNs) are examined for two reasons.
Firstly to understand and reproduce the spike or pulse
processing in the brain. Secondly to use the results of
this research for technical systems that primarily per-
form vision tasks, e. g. different image features are
separated by different phases of spikes of a neuron
group representing these features. The simulation ac-
celeration of large SNNs has to face five main prob-
lem classes [1]: calculation steps, communication
resources, load balancing, storage capacity and mem-
ory bandwidth. The execution time of calculation
steps can be reduced by introducing parallelism,
pipelining and event lists that reduce the number of
neurons and synapses involved in spike generation.
Communication resources and load balancing arise to
a problem during parallel processing and can lead to
longer simulation times because of additional commu-
nication overhead between processing elements (PEs)
and unbalanced loads among the PEs [2]. The storage
capacity determines the size of the network that can be
simulated on a digital acceleration platform without
involving the time consuming communication chan-
nel to a host computer for transferring network param-
eters. However, the main reason for poor simulation
performance of large SNNs is the reduced memory
bandwidth [3] because the most limiting sequential
part during the simulation is the data transfer between

weight memory and PEs [4]. For this reason, a digital
acceleration platform is needed which on the one hand
tackles this main bottle-neck problem by providing a
distributed memory architecture and on the other hand
offers programmability for the control software and
for the simulation accelerating hardware implementa-
tion by field-programmable gate arrays (FPGAs). The
basic architecture of the platform which incorporates
these two aspects is described in the following and is
called Spiking Neural Network Emulation Engine
(SEE).

2   SEE architecture
Most commercially available FPGA based prototyp-
ing platforms or the academic rapid-prototyping sys-
tem RAPTOR2000 [5] do not offer the necessary IO
bandwidth to external memory devices and storage
capacity for an efficient and fast simulation of large
SNNs. Any digital accelerator system with (IO bound-
ed) off-chip memory is almost useless compared to
any DSP or PC system which provides comparable or
better performance at a smaller price, shorter time-to-
market and higher availability [4]. A promising ap-
proach is the BEE rapid-prototyping system [6],
which is equipped with up to 2400 IO pins. The major
drawback of this platform is that the communication
effort between a central event list and a central net-
work topology unit to the 20 FPGAs that the BEE in-



corporates is very high. However, today’s FPGA
technology offers single FPGA devices that present
more than 1000 usable IO pins [7] and therefore al-
lows a more compact digital acceleration platform in
order to optimise the communication resources.

Fig. 1: Overview of the SEE platform.

The SEE, based on three FPGAs (see Fig. 1), is in-
tended as hardware/software (HW/SW) experimental
platform for the simulation of large SNNs that accom-
plishes compact usage of FPGA resources and multi-
ple channels to the weight memory. Latter is
especially needed for spiking neuron models that uti-
lise dynamical synapses because weight values have
to be adapted throughout the whole simulation time.
This approach is therefore more sophisticated than a
recently introduced approach of a digital acceleration
system considering synaptic plasticity [8] where a
central system controller manages the data transfer to
the external weight memory via one single channel.
The three FPGAs within SEE in Fig. 1 undertake the
tasks of simulation control (PPC2), network topology
computation (NTC) and neuron state computation
(NSC).

2.1   Simulation Control
The central FPGA is a Virtex-II-Pro device [7] that in-
corporates two software programmable PowerPC
cores and is responsible for the simulation control.
This task includes the initialisation of the network via
an external serial interface, the monitoring and visual-
isation of network parameters that can be deposited in
the connected SDRAM and the management of the
event lists stored in the SRAM devices. For the simu-
lation two event lists are necessary: the dynamic event
list (DEL) and the fire event list (FEL). The DEL in-
cludes all excited neurons that receive a spike or an
external input stimulus. The FEL stores all firing neu-
rons that are in a sending state and the corresponding
time values when the neuron enters the receiving state
again. The memory size of the DEL of 2 MB deter-
mines the maximum number of neurons that can be

treated during a simulation run. Neurons as well as
time values are coded as 4 byte data. Considering the
worst case scenario that all neurons in the network can
be excited at the same time, the maximum number of
simulatable neurons within SEE leads to 512 K (219).
The FEL has to provide a storage capacity which is
double in size compared to the DEL because of the ad-
ditional time value for each neuron.

2.2   Network Topology Computation
The FPGA in charge of the NTC performs two tasks:
the definition of the presynaptic activity of each excit-
ed neuron by generating a topology vector (receptive
field) and the determination of postsynaptic neurons
in case an excited neuron has entered the sending state
(projective field). For these tasks two tag memories
are required that are realised by dedicated SRAMs:
the fire-tag-field (FTF) and the excitation-tag-field
(ETF). The FTF marks each firing neuron with a tag
(1 bit) and is needed for the generation of the topology
vector. The ETF tags all firing neurons and all neurons
presented in the DEL. This tag-field is required for de-
termining the postsynaptic neurons that have to be
added to the DEL because they have become excited
by a spiking neuron and are not present in the DEL
yet. Currently, three regular connection schemes are
implemented: feedforward point-to-point, 4-nearest-
neighbour and 8-nearest-neigbour connections.

2.3   Neuron State Computation
The FPGA carrying out the NSC has dedicated com-
munication channels to the event lists and the NTC
module providing the topology vectors that are neces-
sary for updating the membrane potentials of each ex-
cited neuron. The simulation algorithm is realised
with an event-driven approach [9] and does not utilise
fixed time steps. A simulation event is the time where
a neuron changes from receiving to sending state or
vice versa. Reading the FEL the next time can be de-
termined when a neuron stops to fire. Within this time
interval a numerical integration is performed to deter-
mine if one of the excited neurons starts to fire (next-
spike phase). The smaller time represents the next
simulation event and the whole network has to be up-
dated to this time (update phase). The NSC unit is
connected to six SDRAM modules that provide a high
storage capacity (1 GB each) and an 8 byte wide data
bus. Thus, six dedicated channels to the weight mem-
ory are available in order to achieve effective parallel-
isation of the numerical integration process. The
parameters for each neuron are stored in a neuron in-
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formation block (NIB). Each NIB consists of a header
that is coded as 8 byte data, and the membrane poten-
tial and presynaptic weight values that are coded as
4 byte data values. The header contains information
about number of presynaptic weights and the input
stimuli value, if present. The NIB of each neuron is
accessed by indirect addressing through a pointer ta-
ble which is stored at the beginning of each SDRAM
module. Hence, each neuron occupies a storage of
16 bytes incorporating the header, the membrane po-
tential and a 4 byte pointer needed for indirect ad-
dressing. This causes a memory requirement of 8 MB
(223) within the total weight memory of 6 GB (6·230)
for the maximum size of 512 K (219) neurons. This
leads to (6·230-223)/219/4 = 3068 weights per neuron
when the maximum number of neurons is considered.

3   Spiking Neuron Model with Adaptive
Weights
The targeted programmable spiking neuron model is a
non-leaky integrate-and-fire neuron (IFN) model pre-
sented in [10]. The function of the membrane potential
aK is illustrated in Eq. 1,

(1)

where t0 is the time of the last simulation event, iK rep-
resents the external input stimulus, NS is the number
of neurons sending a spike, and WKL represents the
corresponding presynaptic weight value. The external
input stimulus is a grey pixel value that is normalised
to values between 0 and 1. The membrane potential aK
stays constant if the neuron does not receive any ex-
ternal stimulus or any spikes. According to Eq. 1, neu-
rons receiving only a constant input current will
always fire regularly. This is in contrast to a leaky IFN
model where the product of input current and leaky-
resistor have to be greater than the firing threshold so
that the neuron fires periodically [11]. The dynamics
of the spiking neuron model evolves from the time
course of the synaptic weights and the emission of
spikes by the presynaptic neurons. The utilised adap-
tation rule during network simulations for the synaptic
weights is,

(2)

where γ is the decay constant, µ is the gain factor, θ is
the constant firing threshold, and XK and XL represent
the status of the post- and presynaptic neuron, respec-
tively. If the postsynaptic neuron is in a receiving state

(XK = 0) and the presynaptic neuron in a sending state
(XL = 1) the exponential decay of the weight will be
affected. Depending on the membrane potential of the
postsynaptic neuron the weight acquires a potentiative
(aK > θ/2) or a depressive effect (aK < θ/2) for the du-
ration of the pulse width td. This kind of weight adap-
tation achieves a synchronised firing for neurons
stimulated by similar external inputs and connected
laterally in a 4-nearest-neighbour connection scheme
[10] even if the membrane potentials of all neurons are
initialised with random values at the start of the simu-
lation.

3.1   Resolution Analyses
For the mapping of the software implementation to the
SEE, resolution analyses were performed in order to
investigate the network performance according to the
transformation from a floating-point representation to
a fix-point representation of model parameters (aK, iK,
WKL, µ, γ, θ, ...) and time parameters. Only arithmetic
operations with fix-point data result in fast and opti-
mised FPGA implementations. Fix-point numbers are
represented by an integer and a fractional part: (i.f).
Since the firing threshold is set to 1, it is sufficient to
represent the integer part of model parameters by
2 bits. For the resolution quality of a fix-point repre-
sentation two quality measures have to be explored:
the spiking frequency and the standard deviation of
spike time distances between connected neurons.
Simulations have revealed that a fractional part of
14 bits for model parameters is needed to achieve the
same spiking frequency as a floating-point implemen-
tation. However, to cope with equal spike time dis-
tances between connected neurons only a fractional
part of at least 18 bits for model parameters were re-
garded to be sufficient. This leads to the current im-
plementation that model parameters are represented
by fix-point number of 20 bits (2.18) and time param-
eters by 32 bits (14.18).

3.2   Numerical Integration Method
In order to provide a high degree of flexibility for nec-
essary changes to the neuron model we decided to pur-
sue a numerical and not an analytical implementation
to determine the next spike time of neurons, according
to Eq. 1 and Eq. 2. The primary criterion for the
choice of a numerical method is the computational ef-
ficiency. An additional complication arises that each
neuron’s firing influences other connected neurons.
An integration with fixed time steps or an first-order-
accurate numerical method, e. g. Euler, can artifactu-
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ally synchronise neurons at a sacrifice of network dy-
namics [12]. The software implementation has
revealed the computational efficiency concerning ex-
ecution time of the Bulirsch-Stoer integration method
[13] compared to a 4th-order Runge-Kutta integration
method. The Bulirsch-Stoer integration method incor-
porates two arithmetic operations [14]: a modified-
midpoint integration (MMID) and a polynomial ex-
trapolation (PZEXTR).
The MMID calculates from the function value y(x) at
the point x the new function value y(x+H) at the point
x+H by a sequence of nstep substeps each of size h.
Therefore, H represents the integration interval and
nstep the number of integration steps within that inter-
val. Besides the first integration step, the gradient of
the current intermediate function value km and the last
intermediate function value km-1 is needed to calculate
the next intermediate function value km+1 or the final
new function value ynstep ≈ y(x+H) as shown in Eq. 3
and Eq. 4 [14]:

(3)

(4)

Finally, the PZEXTR performs an extrapolation of the
new function value yi by calculating the two variables
Qi,k and Di,k [13],

(5)

where the variable i is the index for different new
function values based on y(x) and determined by the
MMID. The extrapolated function value is then de-
fined by a summation stated in Eq. 6:

(6)

4   SEE performance evaluation
The ultimate goal of SEE is to represent a flexible dig-
ital simulation platform for large SNNs that provides
a speed-up factor (FSPEED-UP) of at least 10 compared
to state-of-the-art stand-alone PCs. This allows a more
intense observation of neural network dynamics by
multiple simulation runs. In the following, the per-
formance evaluation of SEE compared to a software
implementation running on a PC (2.4 GHz Pentium-4,
1 GB RAM) is described in order to demonstrate the
superiority of the SEE architecture and to justify the
further HW/SW implementation. Software simula-
tions were performed with single layer network archi-
tectures that were stimulated by a grey-value image

that differed in pixel size (32 x 32, 48 x 48 and
64 x 64). The neurons were laterally connected by a 4-
nearest-neighbour (n = 4) and a 8-nearest-neighbour
(n = 8) connection scheme. Each network was simu-
lated for 1000 ms and the values used for the model
parameters in Eq. 2 are summarised in Table 1:

4.1   Software simulation profiling
Profiling during the software simulations revealed
that the simulation execution time of sparsely con-
nected neurons is dominated by the numerical integra-
tion process. In Fig. 2 the number of events NEVENT
for the 4-nearest-neighbour connection scheme is
shown that increases with increasing network size.
For networks with 8-nearest-neighbour connections
NEVENT is less than 10 % higher. The number of per-
formed numerical integrations per neuron NBSSTEP is
slightly above NEVENT. At each simulation event a nu-
merical integration will be performed by each neuron
in the update phase but only a numerical integration
will be conducted by excited neurons in the next-spike
phase (NEVENT ≤ NBSSTEP ≤  2·NEVENT).

Fig. 2: Numerical integration steps (n = 4).

Further, it was noticed that the number of integration
interval changes per neuron NH is almost identical to
NBSSTEP which confirms that a chosen integration in-
terval H had not been readjusted. The number of sub-
step-divisions per executed numerical integration NI
is nearly twice as NBSSTEP which indicates that two
subdivisions into substeps h within H were necessary.
According to Fig. 2, the average number of integra-
tion interval changes per neuron HAVG and the aver-
age number of necessary substep-divisons within an
integration interval IAVG can be specified as:  

(7)

(8)
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0.1 0.3 1 1 ms 0.12 rand[0,...,1]
Table 1: Neuron model parameter values.
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In Fig. 3 the number of neurons (NNEURON) and
weights (NWEIGHT) are visualised by the left axis
while the required software simulation time TSW for
the numerical integration process (about 70 % of the
total software simulation time) is shown by the right
axis.

Fig. 3: Software simulation time.

The software simulation time does not increase linear-
ly with increasing number of neurons and weights and
takes more than 22 h (80331 s) for a 64 x 64 network
with an 8-nearest-neighbour connection scheme.

4.2   SEE simulation time
The simulation time of SEE depends on several pa-
rameters: the total number of executed numerical inte-
grations during the simulation (NBSSTEP · NNEURON),
the number of parallel usable memory channels NIO,
the operating frequency of the acceleration platform
TCLK

-1, and the duration of the numerical integration
for each neuron TNEURON that depends on the number
of presynaptic weights n and is measured in clock cy-
cles. The simulation time TSEE can therefore be esti-
mated as follows:

(9)

The duration of the numerical integration for each
neuron can be stated as in Eq. 10,

(10)

where tSDRAM represents the clock cycle latency for
accessing the NIB in the SDRAM, and TMMID and
TPZEXTR are the required clock cycles necessary for
the execution of MMID and PZEXTR, respectively.
The duration of the HW module within the NSC-
FPGA (see Fig. 1) that realises the MMID operation is
given by,

(11)

where tMMID represents the clock cycle latency before
the first data appears to be valid at the output of the
pipelined HW module. The derivation of the synaptic
weights (see Eq. 2) required by the MMID incorpo-
rates two parallel multiplications (γ-term and µ-term)
that require 4 clock cycles each. The total number of
clock cycles for the derivation leads to 6 which sums
up to 12 clock cycles for tMMID. The term n/2 in
Eq. 11 accounts for the fact that according to the
8 byte wide data bus of the SDRAM modules two syn-
aptic weights are read at the same time.
The duration of the HW module that implements the
PZEXTR operation is given by,

(12)

where tPZEXTR is the latency of 4 clock cycles result-
ing from the pipelined multiplication (see Eq. 5).
Considering Eq. 7, Eq. 8, the worst case SDRAM la-
tency that can vary between 4 and 10 clock cycles de-
pending on access changes of pages or banks
(tSDRAM = 10), and the time latencies of the current
pipelined HW implementations (tMMID = 12,
tPZEXTR = 4) TNEURON can be determined by Eq. 10
for the two different simulated connection schemes:

(13)

(14)

The intention of the pipelined HW implementation for
arithmetic operations is to ensure an operating fre-
quency of 100 MHz (TCLK = 10·10-9 s). When sparse-
ly connected network architectures are simulated
(n = 4, n = 8) the presynaptic weight values and the
corresponding integration variables (km, km-1, Qi-1,k, yi
and yext,i) can be stored in the internal RAM blocks
provided by the FPGA device. This leads to the fact
that all six memory channels of the NSC-FPGA can be
used in parallel (NIO = 6). Applying Eq. 9, the simula-
tion time of SEE for the numerical integration can be
evaluated and is listed in Table 2 for different network
architectures and sizes.

It can be seen that the numerical integration process
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8
32 x 32 213514 4591 s 32 s 143
48 x 48 550944 24252 s 182 s 133
64 x 64 980053 80331 s 576 s 139

Table 2: Estimated acceleration by SEE.
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can be accelerated by a factor of more than 100 com-
pared to a software implementation running on a
stand-alone PC.  

5   Conclusion
We have presented a promising architecture for a dig-
ital acceleration platform, called SEE, for the simula-
tion of large SNNs. The performance evaluation
compared to a software implementation has revealed
that for the numerical integration process an accelera-
tion by two orders of magnitude is obtainable. The
simulation and design environment of SEE allows the
verification of the functionality of implemented HW
and SW modules, but the simulation under real-time
conditions of such a highly parallel operating digital
system is not feasible. This fact and the promising
SEE architecture encourages the essential next devel-
opment step of designing the printed circuit board
(PCB) sketched in Fig. 1 in order to confirm the SEE
performance.
Further, densely connected network architectures,
e. g. full-connected, are currently under evaluation.
This leads to the scenario that the integration variables
have to be sourced out to the SDRAM modules in or-
der to handle the increasing number of synaptic
weights. In this case,  three memory channels are used
in parallel for each numerical integration process
(NIO = 2) in order to accelerate the MMID where al-
ways two function values are read (km and km-1) and
one function value is stored (km+1 or ynstep). 
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