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Abstract：This study proposes a P  integration method to diagnose rotor systems using vibration responses. 
An integral is defined by integrating the distance of trajectories and origin in phase plane. The responses of a 
nonlinear system for rotating machinery are used to identify the relationship between the P  integration value 
and the integrated interval. In this study, the P  integration method is utilized to diagnose responses in three 
case situations including an unbalanced rotor, a loose base and defects in ball bearings. Furthermore, in these 
case analyses, the P  integration method is compared with spectrum analysis, the Poincaré section method, 
correlation dimension and Kolmogorov entropy. These results are regarded as fault diagnosis methods for 
rotating machinery.  
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1 Introduction  
A vibration signal can indicate abnormal 

operating and fault conditions in rotating machinery. 
However, in practical applications, rotating 
machinery exhibits strongly nonlinear behaviors. 
The vibration spectrum is not equal to rotating speed. 
Additionally, rotating machinery not only has 
rotating speed, but also has multiple speed and other 
frequencies.  

The nonlinear effect almost occurs with the 
clearance of ball bearings, the reaction of 
hydrodynamic bearing, rubbing force, loose screws 
(loosening), etc. In case situations [1-3] symptoms of 
nonlinear vibration reaction are investigated by 
experimental record and simple analysis in former 
research reports. Goldman and Muszynska [4] 
explained that having the vibration of rotary and 
sub-harmonic frequency in loose screws in 
machinery for one degree of freedom of impact 
model in 1994. In numerical analysis, the system has 
chaos motion in certain parameters, in addition to the 
sub-harmonic vibration. Berry [5] used spectrum 
symptoms to establish a fault diagnosis rule for 
rotary machine. Grassberger and Procaccia [6-7] 
carried out a process of reconstructed phase space 
for a variable of time sequence in 1983. They used a 
calculation of correlation dimension integration 
function to diagnose the fault of the motor. 2K , 
Kolmogorov entropy is Kolmogorov [8] expanded 
by the concept of Shannon’s entropy in 1958. This 
method can be used to identify or diagnose regular 

motion, chaos motion or random motion.However, the 
Kolmogorov entropy method cannot identify regular 
motion. In this study, one can analyze responses of 
systems correctly for finite measuring data by using 
the P  integration method. The P  integration 
method is compared with spectrum analysis, the 
Poincaré section method, correlation dimension and 
Kolmogorov entropy. This analysis covers three 
cases including an unbalanced rotor, a loose base and 
defects in ball bearings. The results obtained from 
this analysis will be utilized for fault diagnosis. 
Comparison of each method utilized in motor 
systems will be made. 
 
 
2 P Integration Observers 

An integral defined by integrating the distance 
of trajectories and origin in phase plane has been 
presented as 
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where )(τx  and )(τx&  are time histories of 
displacement and velocity, respectively, τ  is time 
and, ct  is an arbitrary time for nondimensional 
parameters, taken at the time of steady state. The 
integration interval T  is the nondimensional period 
of a distinct harmonic excitation or the least 
common multiple of periods of multi-harmonic 
excitations. Constant TP  can be obtained from time 
history, when response is P-1 motion. Consequently, 



the integration interval nT  is set for determining 
the period of P-n motion and the n-th main or 
differential sub-harmonic responses. 

This integration observer can also be expressed  
by 
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where the integrand function can be presented by 
)()(),(),(),( ττττ xxxxxxf &&& += , )(2 τx or )(2 τx& . 

These functions will exhibit similar results, where 
the integrand represents the distance between 
trajectories and origin or trajectories and one of the 
coordinate axes in phase plane. 

Equation (2) can be modified by replacing the 
integration interval T  by T̂ . Thus the modified P 
integration method is defined by 
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where the integration interval T̂  is set to be the 
predicted, confirmed, oscillating period. For example, 
if the system undergoes period-doubling, T̂  might 
be multiples of T , i.e. T̂ = nT  where T  is the 
excitation period and n an integer. The integer n is set 
to identify the response period of P-n motion. Note 
that “P-n ” denotes (for convenience) that the system 
response undergoes motion of period nT  through 
period-doubling. Furthermore, in Eq. (3), ct  will be 
varied to assist in the determination of the response 
period. Therefore, for a specific period T̂ , the value 
of TPˆ  is a function of ct . 

Period T̂  in Eq. (3) is set to be the excitation 
period i.e. T̂ = T  to calculate TP  for constructing 
the bifurcation diagram in order to observe nonlinear 
behavior. This is the same as the sectioning period 
for the Poincaré method. 

When the steady state response of a nonlinear 
system is periodic with T̂ , there is 

))ˆ( ),ˆ(()ˆ()(),( TxTxfTffxxf ++=+== ττττ &&  (4) 
and one obtains 
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or )(ˆ cT
tP = constant                         (6) 

As proof of the above for periodic motion, see 
Eq. (6). With period T̂ , the integral T̂P  is constant 
against the starting time of integration. Thus, the 
period T̂ of a steady state response can be identified 
due to the existence of constant TPˆ . 

It should be noted that the above procedure is 
structured on the basis that the integral value T̂P  
would be constant as opposed to varied starting 
times ct ’s, if the chosen integration interval T̂  is 
equal to the response period. Another point 
addressed is that the period is determined on the 
basis that the T̂P  value remains constant over ct . 
This avoids possible error, by measurement or 
computation tolerance, occurring in the process of 
distinguishing the geometric points of Poincaré 
sectioning in phase space. Furthermore, by utilizing 
the method of T̂P  integration mentioned above, the 
set of simulated or experimental data needed to 
determine response period all reside in the time 
range ]tT̂t  ,t[ c,c,c ∆++00 , the duration of which is 

)tT̂( c∆+ . With the freedom to set ct∆  small, the 
duration )tT̂( c∆+  is less than T̂ ’s, which is 

usually the time span utilized by Poincaré sectioning 
to collect data for identifying the response period 
due to measurement or numerical tolerance. 
 
 
3 Experiments and analysis 
3.1 Unbalanced rotor 

An unbalanced rotor is a common fault type in a 
rotary machine. This is due to the fact that the mass 
distributed along the rotor is not uniform. When the 
rotor is running and creates centrifugal force, the 
major vibration frequency is rotary frequency. Fig. 1 
demonstrates an unbalanced rotor and loose base 
system using the experiment rotor kit. Fig. 2 shows 
the displacement spectrum of an unbalanced rotor 
system and has rotary and harmonic frequency. This 
study analyzes the fault response by using the 
P integration method, Poincaré section method, 
correlation dimension and Kolmogorov entropy. 
(a) P integration method 

The integrand represents the distance between 
the rotor’s motion trajectories and origin point by 
using the P  integration method. According to the 
P  integration method calculation procedure, Fig. 3 
demonstrates integration curves at different integration 
intervals. The integration interval T̂  is set to be the 
rotary period. Fig. 3(a)-(b) shows both values TP  and 

TP2  remain constants, when integration intervals T and 
2T are indicated. Because both errors are 0.42% and 
0.32%, respectively, the system response might be P-1 
regular motion. 
(b) Poincaré section method 

Fig. 4 shows time histories of experimental 
measuring signals and the solid points are Poincaré 



section points. When rotary frequency is 32 Hz, the 
vibrations of the system are regular and periodic. The 
Poincaré section points remain constant and change 
only slightly. The system response might be P-1 
regular motion. 
(c) Correlation dimension and Kolmogorov entropy 

Moreover, the system responses from the results 
of experiments are used to carry out the process of 
reconstructed phase space. Its correlation dimension 
and Kolmogorov entropy are calculated so as to 
distinguish the types of system responses. In the 
analysis, the corresponding time equal to 24 is seen 
as the reconstructed delaying time when the 
auto-correlation dimension of system response 
reaches 1/exp value. Correlation function numbers of 
embedding dimension, 1=m , 2,…., 30 are also 
calculated. Correlation dimension, 2D  and 
Kolmogorov entropy, 2K  are calculated in the 
linear intervals according to the changes of 
embedding dimension. This relationship is shown in 
Figs. 5(a)-(d). The figures indicate that 2D  and 2K  
of reconstructed time sequence of system response 
tend to become stable when the embedding 
dimension increases to a certain value. The 
correlation dimension tends to be near 1.027 and 
1.025 and Kolmogorov entropy, 2K  values become 
closer to 0.29 and 0.28. According to the definition, 
the correlation dimension regarding periodic motion 
is equal to 1 and Kolmogorov entropy is equal to 
zero. The results demonstrate that the system 
response might be regular motion. 
 
3.2 Loose base 

Screws, not securely fastening the ball bearings 
(loosening) on rotor systems is a common fault type 
in a rotary machine. These loose screws in rotor 
operation will create an abnormal vibration 
phenomenon. These loosening faults in a rotary 
machine sometime follow the nonlinear phenomenon. 
The vibration frequency also has sub-harmonic and 
harmonic frequency, in addition to the rotary 
frequency. Fig. 6 demonstrates the displacement 
spectrum of screws loosened in a rotor system. 
Analysis of the fault response is accomplished 
utilizing the P integration method, Poincaré section 
method, correlation dimension and Kolmogorov 
entropy. 
(a) P  integration method 

The integrand represents the distance between 
the rotor’s motion trajectories and origin point 
utilizing the P integration method. According to the 
P  integration method calculation procedure, Fig. 7 
demonstrates integration curves that are calculated 

with the P integration method at different 
integration intervals. The integration interval T̂  is 
set to be the rotary period. When integration 
intervals increase from T to 4T. Fig. 7 demonstrates 
that only the TP2 and TP4 value remain constant and 
errors are kept to 3%, TP and TP3  values are 
oscillating irregularly. The system response might be 
P-2 regular motion.  
(b) Poincaré section method 

Fig. 8 shows time histories of experimental 
measuring signal and the solid points are Poincaré 
section points. When rotary frequency is 32 Hz, the 
vibrations of the system are regular and periodic. 
The Poincaré section points remain two constants 
and change only slightly. The system response might 
be P-2 regular motion.  
(c) Correlation dimension and Kolmogorov entropy 

The system responses from the results of 
experiments are used to carry out the process of 
reconstructed phase space. Its correlation dimension 
and Kolmogorov entropy are calculated to 
distinguish the types of system responses. In the 
analysis, the corresponding time equal to 34 is seen 
as the reconstructed delaying time when the 
auto-correlation dimension of system response 
reaches 1/exp value. Correlation function numbers of 
embedding dimension, 1=m , 2,…., 30 are also 
calculated. Correlation dimension, 2D  and 
Kolmogorov entropy, 2K  are calculated in the 
linear intervals according to the changes of 
embedding dimension. This relationship is shown in 
Figs. 9(a)-(d). The figures indicate that 2D  and 

2K  of reconstructed time sequence of system 
response tend to become stable when the embedding 
dimension increases to a certain value. The 
correlation dimension tends to be near 1.07 and 1.15 
and Kolmogorov entropy, 2K  values become 
closer to 0.32 and 0.47. According to the definition, 
the correlation dimension regarding periodic motion 
is equal to 1 and Kolmogorov entropy is equal to 
zero. The results demonstrate that the system 
response might be regular motion.  
 
3.3 Defects in ball bearings  

Ball bearings are an essential part in the motor 
equipment. Fig.10, it was a three-phase, two-pole, 
350Hp, induction motor the shaft’s height being 
355mm with defects in the ball bearings. When the 
ball bearings break there is an occurrence of 
defective frequency, defective harmonic frequency 
and sideband frequency. The signal measurement 
method is used to measure defective ball bearings. 



When some fault exhibit itself during normal rotor 
operation, abnormal vibration phenomenon will 
occur Fig. 11 shows the displacement spectrum of 
defective ball bearings of a rotor system. The 
vibration frequency has defective frequency, 
defective harmonic frequency and sideband 
frequency, in addition to the rotary frequency. The 
fault response is analyzed using the P  integration 
method, Poincaré section method, correlation 
dimension and Kolmogorov entropy. 
(a) P  integration method 

The integrand represents the distance between 
the rotor’s motion trajectories and origin point using 
the P  integration method. According to the P  
integration method calculation procedure, Fig. 12 
demonstrates integration curves at different integration 
intervals. The integration interval T̂  is set to be the 
rotary period. When integration intervals from T increase 
to 16T, all of the T̂P values are oscillating irregularly. 
The system response might be chaos motion. 
(b) Poincaré section method 

Fig. 13 shows time histories of experimental 
measuring signals. The solid points are Poincaré 
section points. When rotary frequency is 60 Hz, the 
vibrations of the system are irregular. The Poincaré 
section points are distributed randomly. The system 
response might be chaos motion. 
(c) Correlation dimension and Kolmogorov entropy 
The system responses from the results of experiments 
are used to carry out the process of reconstructed 
phase space. Its correlation dimension and 
Kolmogorov entropy are calculated to distinguish 
between the types of system responses. In the 
analysis, the corresponding time equal to 1 is seen as 
the reconstructed delaying time when the 
auto-correlation dimension of system response 
reaches 1/exp value. Correlation function numbers of 
embedding dimension, 1=m , 2,…., 30 are also 
calculated. Correlation dimension, 2D  and 
Kolmogorov entropy, 2K  are calculated in the 
linear intervals according to the changes of 
embedding dimension. This relationship is shown in 
Figs. 14(a)-(d). The figures indicate that 2D  and 

2K  of reconstructed time sequence of system 
response tend to become stable when the embedding 
dimension increases to a certain value. The 
correlation dimension tends to be near certain 
fractions and Kolmogorov entropy, 2K  values 
become closer to 2500 and 4000. According to the 
definition, the correlation dimension regarding chaos  
motion is equal to a certain fraction and Kolmogorov 
entropy is equal to a positive number. The results 

demonstrate that the system response might be chaos 
motion.  
 
 
4 Conclusions 

In practical experiments, it is difficult to 
identify or diagnose the responses of regular motion 
in rotating machinery by using the Poincaré section 
method, correlation dimension or Kolmogorov 
entropy for finite measuring data. However, one can 
get a constant value using the P  integration 
method with the integration interval nT , so that P-n 
regular motion can be identified. Table1 shows all 
methods that diagnose nonlinear motion 
responses in the rotating machinery. 
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Table1 All methods that diagnose nonlinear motion 
responses in the rotating machinery. 

       Motion type 
Method Periodic Quasi-period Chaotic Random 

P integration Constant 
(yes) 

Constant 
(yes) 

Not 
positive
constant

(no) 

∞ 
(no)

Correlation 
dimension  

1 
(no) 

2 or 3 
(no) 

Fraction
(yes) 

∞ 
(yes)

Kolmogorov 
entropy 

Zero 
(no) 

Zero 
(no) 

Constant
(yes) 

∞ 
(yes)

(yes): has identification ability. (no): has no 
identification ability. 
 

 
Fig.1 Unbalanced rotor and loose base system of the 

experiment rotor kit. 
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Fig.2 The displacement spectrum for unbalanced 
of the experiment rotor kit. 
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(a) integral interval TT̂ =  (b) integral interval TT̂ 2=
Fig.3 TP  integration value for unbalanced of the 

experiment rotor kit. 
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Fig.4 Poincaré section points for unbalanced of 
the experiment rotor kit. 
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Fig.5 (a) Correlation dimension 2D  and (b) 
Kolmogorov entropy 2K  versus 
embedding dimension for unbalanced of the 
experiment rotor kit. 
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Fig.6 The displacement spectrum for loose base of 
the experiment rotor kit. 
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Fig.7 TP  integration value for loose base of the 
experiment rotor kit. 
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Fig.8 Poincaré section points for loose base of the 
experiment rotor kit. 
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Fig.9 (a) Correlation dimension 2D  and (b) 

Kolmogorov entropy 2K  versus 
embedding dimension for loose base of the 
experiment rotor kit. 

 

 
Fig. 10 Defecting in ball bearings of the motor. 
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Fig.11 The displacement spectrum for defects in 
ball bearings of the motor. 
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Fig.12 TP integration value for defects in ball 
bearings of the motor. 
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Fig.13 Poincaré section points for defects in ball 
bearings of the motor. 
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Fig.14 (a) Correlation dimension 2D  and (b) 

Kolmogorov entropy 2K  versus 
embedding dimension for defects in ball 
bearings of the motor. 

 


