
Apply Autoassociative Learning to Recover the Motion and the Shape
from Sequences of Scaled Orthographic Images

JUN FUJIKI†, TAKASHI TAKAHASI†† and TAKIO KURITA†
† Neuroscience Institute,

National Institute of Advanced Industrial Science and Technology,
Tsukuba-Central 2, 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-0035,

†† Faculty of Science and Technology,
Ryukoku University,

Otsu-shi, Siga 520-2194,
JAPAN

Abstract: - It is well known that the feature of hidden layer of three-layered perceptron under autoassocia-
tive learning of some data is equivalent to the principal component analysis of the data. When we consider
the autoassociative learning, the representation of the hidden layer is not so important and do not paid atten-
tion. However, when we consider the structure from motion problem under scaled orthographic projection,
the hidden layer of three-layered perceptron is significant because the hidden layers represent the affine
transformation of the feature points of the object. To fix the affine ambiguity of the hidden layer, we present
an autoassociative learning of three-layered perceptron of its connecting coefficients constrained. After the
present learning, the hidden layers represent the Euclidean coordinates of the feature points of the object.
The present algorithm works well even if half of data are missing. We evaluate the ability of the algorithm
through experiment with synthesize data.
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1 Introduction

It is well known that the feature of hidden layer
of three-layered perceptron (3-MLP) under autoas-
sociative learning of some data is equivalent to the
principal component analysis (PCA) of the data[1].
When we consider the autoassociative learning, the
representation of the hidden layer is not so impor-
tant and do not paid attention. However, when
we consider the structure from motion problem un-
der scaled orthographic projection (which is a kind
of affine approximation of the perspective projec-
tion), the hidden layer of three-layered perceptron
is significant because the hidden layers are closely
related to the three-dimensional coordinates of the
feature points of the object, that is, the hidden lay-
ers represent the affine transformation of the fea-
ture points of the object. To fix the affine ambi-

guity of the hidden layer, we give the constraints
on the three-layered perceptron. After autoassocia-
tive learning with constraints is finished, there is no
ambiguity on the hidden layers and they represent
the Euclidean coordinates of the feature points of
the object.

From the view point of the computer vision, re-
covering the camera motion and the object shape
from multiple images with point correspondences
is the fundamental and important problem and
many researches are investigated. Perspective
camera model is suitable for this recovering prob-
lem because perspective camera represents pin-
hole camera theoretically. However, pin-hole
camera model derives non-linear inverse problem
which has noise-sensibility and unstablity for nu-
merical computation. Hence, affine approximation
models such as scaled orthographic model are pre-



sented for camera model. Although affine approx-
imation models has the limitation of accuracy for
reconstruction, these models derives stable recon-
struction and speedy calculation on the contrary to
the pin-hole camera model, because these models
are consist of linear inverse problem. The recon-
struction under affine approximation model is also
used for the initial value for the algorithm under
pin-hole camera model. Then the study of affine
approximation camera is important to improve the
recovering problem. Therefore, many algorithm
under affine approximation model are presented.
However, these algorithms, which include the fa-
mous and excellent method named the factoriza-
tion method[6], are not sufficient to overcome the
lack of data caused by occlusion and/or failure of
tracking points.

In this paper, we present the new method to re-
cover the motion and the shape of a object from se-
quences of scaled orthographic images, which has
robustness against missing data. The main struc-
ture of present method is the autoassociative learn-
ing by a 3-MLP, and we introduce the constraints
on connecting coefficients of the 3-MLP. The au-
toassociative learning can estimates the missing
data and it makes the present method robust against
missing data. The key idea of the method is the
singular value decomposition which appears in the
factorization method is closely related to the PCA
which appears in the autoassociative learning by
3-MLP, then the present method is the implemen-
tation of the factorization method for scaled ortho-
graphic model to a 3-MLP.

2 Scaled orthographic projection

Scaled orthographic projection is the ortho-
graphic projection considering the distance be-
tween camera center and the object, that is, com-
position of the orthographic projection and the ex-
tension of which rate is determined by the distance
between camera center and the object.

In the context of the factorization method, we
can set the object is stable and only the camera is
moving without loss of generality because the im-
ages are determined only the relative position be-
tween camera and object.

Let {if , jf} be the orthonormal basis on the f -

th image plane, kf be the unit vector along optical
axis, Cf = (if , jf , kf)

T be the camera basis ma-
trix and sp be the world coordinate of the p-th fea-
ture point. We also define Xfp = (Xfp, Yfp, Zfp)

T

and xfp = (xfp, yfp)
T as the camera coordinate

and the image coordinate of the p-th feature point
on the f -th image plane, respectively. When con-
sidering the scaled orthographic projection, using
the relative coordinate from the some feature point
named ∗-th feature point (or center-of-mass of the
object) is convinent. By using the relative coor-
dinate s∗

p = sp − s∗, X∗
fp = Xfp − Xf∗ and

x∗
fp = xfp − xf∗, there holds X∗

fp = Cfs
∗
p (see

figure 1), and the representaion of the scaled ortho-
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Figure 1. Camera coordinate and world coor-
dinate.

graphic projection is

x∗
fp =
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where Zf∗ is the distance between camera center
and the object (the ∗-th feature point) as shown in
figure 2. In the projection, we cannot determine
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Figure 2. Scaled orthographic projection.



the value of {Zf∗}F
f=1 but the ratio of {Zf∗}F

f=1

because twice distance of twice sized object de-
rives same image, for example. The ambiguity is
parametrized as the ratio called global scale pa-
rameter.

To fix the ambiguity, the depth parameters
which include global scale parameter are defined
as λf∗ = Zf∗/Z1∗ (note that λ1∗ = 1). By using
the new depth parameter λf∗, the new representa-
tion of the scaled orthographic projection is as fol-
lows:

x∗
fp =

1

λf∗

(
1 0 0
0 1 0

)
Cfs

∗
p

= λ−1
f∗

(
iT
f

jT
f

)
.s∗

p (1)

Note that {λf∗}F
f=1 is proportional to the distance

between camera center and the object, and fix the
ambiguity comes from global scale parameter as
λ1∗ = 1.

Let measurement matrix W ∗, motion matrix M
and shape matrix S∗ be defined as

W ∗ =

⎛⎜⎝ x∗
11 · · · x∗

1P
...

. . .
...

x∗
F1 · · · x∗

FP

⎞⎟⎠ , M =

⎛⎜⎝ M1
...

MF

⎞⎟⎠
Mf =

(
mT

f

nT
f

)
= λ−1

f∗

(
iT
f

jT
f

)
,

S∗ = (s∗
1, . . . , s

∗
P ),

there holds W ∗ = M(2F×3) S∗
(3×P ). (Note that

rank W ∗ ≤ 3).
We can easily compute

Cf = (if , jf , if × jf)
T,

λf∗ = ||mf ||−1 = ||nf ||−1

from Mf = λ−1
f∗ (if , jf)

T, then the decomposition
of W ∗ into MS∗ attains the recover of the camera
motion and the object shape. However, the decom-
position of W ∗ into MS∗ is not unique because the
decomposition of W ∗ = M̂ (2F×3) Ŝ∗

(3×P ) derives
another decomposition (M̂A)(A−1Ŝ∗) where A is
arbitraly 3 × 3 invertible matrix. Hence, M̂ , Ŝ∗

are only the affine reconstruction. To upgrade the
affine reconstruction to Euclidean reconstruction,

the matrix A should be computed to satisfy

MfM
T
f = λ−2

f∗ I2 ⇐⇒
⎧⎪⎨⎪⎩

mT
f mf − nT

f nf = 0,
mT

f nf = 0,
mT

1 m1 = 1
(2)

(f = 1, . . . , F ) which are named metric con-
straints. Note that λf∗ is computed by λf∗ =
||mf ||−1 = ||nf ||−1.

After computed the matrix A, the Euclidean re-
construction is derived. This is the procedure of
the factorization method.

Note that a pair of reconstructions are derived
from affine approximation images under point cor-
responcences, and the pair is mutually reflection
called Necker reversal. It is well known that we
cannot chose the pair of which is true reconstruc-
tion only from point correspondences. Hence, we
identify the pair reconstructions.

3 Autoassociative Learning

It is known that the feature of hidden layer of 3-
MLP under autoassociative learning of some data
is equivalent to the principal component analysis
of the data[1]. In this section, we explain the au-
toassociative learning by a 3-MLP and that with
constraints on its connecting coefficients.

Let us consider a 3-MLP which has N units in
both the input and the output layers, respectively,
and H(< N) units in the hidden layer.

Let {xp = (xp1, . . . , xpN)T ∈ RN}P
p=1 be a

given input vector, yp be a hidden layer vector as-
sociated with xp, and x̂p = (x̂p1, . . . , x̂pN )T ∈ RN

be a output vector associated with xp. When all
units have a linear activation function, there exist
the matrices U and W to represent the connection
between input layer and hidden layer, and between
hidden layer and output layer, respectively. Then
there hold

yp = U
(H×N)

xp,

x̂p = W
(N×H)

yp = (w1, . . . , wN )Typ.

The autoassociative learning is to approximate
each input data by using its output. Then the learn-
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Figure 3. Factorization and autoassociative
learning.

ing is realized by minimizing

E =
1

2
ε2 =

1

2

P∑
p=1

‖x̂p − xp‖2.

Therefore, the learning rules are given as

∆wn = −α
∑
p

∆xpnyp,

∆U = −α
∑
p,n

∆xpnwnxT
p

where ∆xpn = x̂pn−xpn and α is the learning rate.
Note that a 3-MLP of connection

(A−1U, WA, A−1yp) is the same performance
as that of connection (U, W, yp) for arbitrary
invertible H × H matrix A. Hence, the hidden
layer vector under an autoassociative learning of
χ∗

p = (xT
1p, . . . , x

T
Fp)

T = (χp1, . . . , χp,2F )T is not
s∗

p itself but the affine transformation of s∗
p (see

figure 3).
To Determine the matrix A to represent the hid-

del layer vector as s∗
p, that is, to upgrade the affine

reconstruction into the Euclidean reconstruction,
we introduce the constraints

E1 =
1

2

F∑
f=1

‖mT
f mf − nT

f nf‖2

E2 =
1

2

F∑
f=1

‖mT
f nf‖2

to a 3-MLP, which is equivalent to the equation
(2). This autoassociative learning with constraints
is what we presents in this paper. The presented
learning is realized by minimizing

E =
1

2
ε2 + β (E1 + E2)

where β is a weight. In this case, the learning rules
are given as

∆mf = −α
∑
p

∆χp,2f−1sp

− αβ{(mT
f mf − nT

f nf)mf

+ (mT
f nf)nf}

∆nf = −α
∑
p

∆χp,2fsp

− αβ{(nT
f nf − mT

f mf)nf

+ (mT
f nf)mf}.

where ∆χpn = χ̂pn − χpn.
Note that β = 0 stands for the learning without

connecting coefficients constrained.
To cope with missing data such as occlusions

and tracking errors in real image, we replace the
conventional squared error ε2 with the following
weighted error.

ε̃2 =
P∑

p=1

F∑
f=1

µfp‖x̂fp − xfp‖2

where µfp is a constant in {0, 1}. If xfp is a miss-
ing data, µfp is set to 0, otherwise it is set to 1.
Then the learning rules are modified so as to mini-
mize

E =
1

2
ε̃2 + β (E1 + E2) .

After learning converged, we can estimate the
missing data as the output vector of 3-MLP.

The procedure of the estimation of missing data
is as follows:

(0) Initialize missing data as zero.

(1) Initialize connecting coefficients of 3-MLP.

(2) Autoassociative learning to estimate of miss-
ing data.

(3) Initialize missing data as estimate (2) and go
to (1).

4 Experiment

In this section, we evaluate the presented algo-
rithm by synthesized data. the data are genetated



by scaled orthographic projection, not perspective
projection.

An object consists of 20 feature points {sp}20
p=1

generated from uniform distribution on 200-pixel
cube.

We use 10 image of the object. The first camera
base matrix is set to identity matrix, C1 = I3, and
the rest of nine camera base matrix for each ob-
ject C2 ∼ C10 are generated independently by Eu-
ler angle representation of rotation matrix of three
Euler angles are chosen from uniform distribution.
The first and second depth parameters of both ob-
jects are set to λ1∗ = 1, λ2∗ = 2, and the rest of
eight depth parameters of each object λ3∗ ∼ λ10,∗
are generated independently from uniform distri-
bution on closed interval [1, 2].

We set parameters as follows: learning rate α =
5 × 10−7, weight for constrains term β = 1000.

The number of iteration for estimation of miss-
ing data as (2) as previous section is set to 1× 106.

The shape errors and the depth errors are mea-
sured by relative error as∥∥∥S∗true − S∗estimated

∥∥∥ · ∥∥∥S∗true
∥∥∥−1

,

λestimated
f∗ − λtrue

f∗
λtrue

f∗
.

The motion errors are measured by the an-
gle between true kf and estimated kf , that is,
cos−1 ||(kestimated

f )Tktrue
f ||.

First, we investigate the reconstruction error
against noise. In the computation of errors, we use
true value and estimated value of missing data.
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Figure 4. Shape error against Gauss noise

Figure 4-6 shows the reconstruction errors against
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Figure 5. Depth error against Gauss noise
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Figure 6. Motion error against Gauss noise

noise for missing rate is 0% and 30%. The recon-
struction errors are inclease linearly. We can see
high-performance of the reconstruction is achived
when there is no missing data, and acceptable re-
construction is achived although 30% of the data
were missing.

We investigated the robustness against data
missing for the data added the Gauss noise of 0 or
5-pixel standard deviation. Figure 7-9 shows the
reconstruction errors against missing rate. Noise
has little effects on the breakdown point and the
breakdown point of the algorithm is around 50% ∼
60%. Then the presented method has the robust-
ness against missing data.

5 Conlcusion

We presented an autoassociative learning of
three-layered perceptron of its connecting coeffi-
cients constrained, and we applied the learning to
recover the motion and the shape under scaled or-
thographic projection. The presented algorithm
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Figure 7. Shape error against missing data
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Figure 8. Depth error against missing data

works well even if half of data are missing. In
the presented algorithm, we change only missing
data and do not change the observed data. We ex-
pect that good changing of the observed data derive
better performance of the reconstruction. Then the
improvement of presented algorithm is needed.
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