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Abstract

In this paper, we propose a new method for information-
theoretic competitive learning that maximizes information
about input patterns as well as target patterns. The method
is called teacher-directed information maximization, be-
cause target information directs networks to produce ap-
propriate outputs. Target information is given in the in-
put layer, and errors need not be back-propagated, as with
conventional supervised learning methods. In the new
method, we use information-theoretic competitive learning
with Gaussian activation functions to simulate competition,
because information maximization processes are acceler-
ated by changing the width of the functions. Teacher in-
formation is added by distorting the distance between input
patterns and connection weights. We applied our method
to a road classification problem. In the problem, we could
show that training errors could be significantly decreased
and better generalization performance could be obtained.

1 Introduction

In this paper, we propose a new approach to supervise com-
petitive learning. In the new method, teacher information is
included in the input layer, and it directs networks to pro-
duce appropriate outputs. Because errors between targets
and outputs need not be back-propagated, this is a very
efficient learning method. The method can contribute to
neural computing in three ways: (1) this is a new type of
flexible information-theoretic competitive learning; (2) we
use Gaussian functions to compute outputs from compet-
itive units; (3) weighted distances between input patterns
and connection weights are used.

First, this is a new type of competitive learning in
which information is maximized to simulate competitive
processes. Conventional competitive learning has been
used as one of the main learning algorithms in neural net-
works [1], [2]. In competitive learning, a winner is obtained
by the winner-take-all algorithm or more biologically plau-
sible lateral inhibition. However, several serious problems
have been reported in conventional competitive learning.
For example, some neurons become dead or under-utilized.

To overcome this problem, there have been many attempts
to eliminate dead neurons [4], [5], [6], [7], [8], [9], [10],
to cite a few. The problem still remains serious in conven-
tional competitive learning. In our new method [11], [12],
[13], [14], this problem can clearly be solved, because com-
petitive processes are realized by maximizing information
between input patterns and competitive units. In maximiz-
ing mutual information, the entropy of competitive units is
increased as much as possible. When the entropy is max-
imized, all competitive units are equally used on average,
and no dead neurons can be produced. In addition, when in-
formation is completely maximized, this method becomes
close to conventional competitive learning with the winner-
take-all algorithm. On the other hand, when information
is smaller, many competitive units are activated, and soft
competitive processes are realized. Thus, our method in-
cludes conventional competitive learning and is a very flex-
ible competitive learning method.

Second, we use Gaussian activation functions to re-
alize competitive processes. In the previous methods, we
used the sigmoidal activation function [15], [16], [17] [11],
[12], [13]. As information is increased, strongly negative
connections are generated; information can easily be in-
creased. However, too strongly negative connections may
blur teacher information, and this causes difficulty in de-
creasing errors between targets and outputs. To remedy this
shortcoming, we use Gaussian functions in this paper, be-
cause we can increase information content by adjusting the
width of Gaussian functions. When the width is smaller,
competitive units tend to respond to a limited number of
input patterns, which should be realized by maximizing
mutual information between input patterns and connection
weights. Thus, information maximization can be facilitated
by adjusting the Gaussian width.

Third, we try to extend our information-theoretic
competitive learning to supervise learning. Because un-
supervised competitive learning cannot deal with com-
plex problems, we need to incorporate teacher informa-
tion in competitive learning. For example, LVQ by Ko-
honen [3] is one of the most successful techniques for in-
cluding teacher information in competitive learning. LVQ
measures distance between input patterns and competitive
units, and if an input pattern is not included in the corre-



sponding class, distance is increased. Another model is
a hybrid model in which competitive learning is directly
connected with supervised learning. The method is called
counter-propagation [18], [19]. In the method, learning is
significantly accelerated, compared with conventional BP.
Rumelhart and Zipser [2] used correlated teachers to su-
pervised competitive learning in which overwhelming large
correlated teachers are needed. In the new approach, infor-
mation on input patterns as well as on targets is maximized.
To realize this situation, we add targets to the ordinary in-
put units. Then, distance between input patterns and con-
nection weights are adjusted by taking input account target
information. For example, even if distance between input
patterns and corresponding connection weights is small,
distance is forced to be increased when target information
tells a network to do so. In the new approach, we need not
back-propagate errors between targets and outputs, and this
is a very efficient computational method.

2 Teacher-Directed Information Maximiza-
tion

Information is defined as decrease in uncertainty from an
initial state to a state after receiving input patterns [20],
[16]. This uncertainty decrease, or the information, is de-
fined by
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where ����, ���� and ������ denote the probability of fir-
ing of the �th unit, the �th input pattern and the conditional
probability of firing of the �th unit, given the �th input pat-
tern, respectively.

Then, we attempt to apply the information discussed
above to neural networks. For simplicity, we suppose that
the number of the competitive units corresponding to the
output units is two and the number of the competitive units
in an intermediate layer is an even number. In addition, we
suppose for simplicity that input patterns can be divided
evenly into two classes. These suppositions are only for
simplifying the following presentation. As shown in Fig-
ure 1, a network is composed of an input, the first com-
petitive and the second competitive layer. In each layer,
information is maximized. However, some connections are
fixed and do not change throughout learning. Figure 1(a)
shows a network with only fixed connections. Connections
from teachers to the first competitive units are fixed, and
connections between two competitive layers are also fixed.
Thus, connections to be updated are those from training
units to the first competitive layer, as shown in Figure 1(b).
In a testing phase (Figure 1(c)), no connection weights be-
tween correlated teachers and the first competitive layer
exist. Thus, networks must infer the final states without
teacher information.

Let us present update rules to maximize information
content. As shown in Figure 1, a network is composed of �
input units and � competitive units. We denote the value
of the �th input, given the �th input pattern by ���. For sim-
plicity, the number of competitive units is even, the number
of output unit is two and targets are binary. This means that
a unit corresponding to a target class is turned on, while all
the other units are off. We use weighted distance between
input patterns and connection weights to incorporate infor-
mation on targets. Weighted distance of the �th competitive
unit, given the �th input pattern, is defined by
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where ��� denote connections from the �th input unit to
the �th competitive unit, and 
�� is defined by
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where �� are targets (supposed to have one or zero), and
connection weights ��� are constants. In this paper, the
weights ��� for correlated teachers are set to � for � � � �
��� and �� � for ����� � � �� , respectively, where
� is the number of competitive units and 	 � � � �. The
weights ��� have inverse values: � � � for � � � � ���
and � for ��� � � � � � � . These connections are not
updated and fixed throughout learning. The �th competitive
unit receives a net input from input units, and an output
from the �th competitive unit can be computed by
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In modeling competition among units, we use normal-
ized outputs as conditional probabilities:
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where � is the number of competitive units. Because input
patterns are supposed to be given uniformly to networks,
the probability of the �th competitive unit is computed by

���� �
�

�

��
���

��� � ��� (6)

where � is the number of input patterns. Thus, information
is computed by
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Figure 1. Multi-layered network architecture for teacher-directed learning. Figures (a) and (b) show a network with fixed
connections and variable connections in a training phase, respectively. Figure (c) shows a network in a testing phase.

Differentiating information � with respect to input-
competitive connections ��� , we have easily the final up-
date rules. By using this update rule, mutual information is
increased as much as possible. In a process of information
maximization, units compete with each other, and finally a
unit wins the competition. By maximizing information, we
can simulate competitive learning.

In the second competitive layer, probabilities are
computed in the same way. The only difference to be noted
is that input units ��� are replaced by normalized competi-
tive unit activities ��� � ��. Thus, the �th competitive unit
in the second competitive layer receives a net input from
the first competitive layer, and an output from the �th com-
petitive unit can be computed by
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where ��� denotes a connection from the �th competitive
unit in the first competitive layer to the �th competitive unit
in the second competitive layer. Weights ��� in the second
competitive layer are some constants. For example, when
the number of competitive units is two, ��� are set to � for
� � � � ��� and 	 for ��� � � � � �� , respectively.
Weights ��� have inverse values. Conditional probabilities
are computed by normalized activities:
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Let us explain how teacher information directs a net-
work to produce appropriate outputs. As shown in Figure
1(a), we imagine a case where the first competitive unit
of the correlated teacher units and the output units are on.
By the equation 
�� �

��

��� ���
�
�, 
�� are set to �. Thus,

connection weights from the unit to the first two competi-
tive units in the first competitive layer are set to �, which is
smaller than one by definition. Thus, distances between the
connection weights and these competitive units are forced
to be smaller than actual distances obtained by the equation��

�����
�
� �����

�. This means that even if actual distance
is large weighted distance becomes small, and this forces
two competitive units to turn on. On the other hand, con-
nection weights ��� for the third and the fourth competitive
units are set to ���. This means that even if actual distance
is smaller weighted distance is larger, and the competitive
units tend to be off. In a testing phase (Figure 1(c)), corre-
lated teachers are all dropped off, and a network must infer
final outputs only with input patterns.

Finally, we should note a computational method. We
have stated that connection weights from the correlated
teachers to competitive units are always fixed. However,
we have observed that if fixed connection weights are
changed according to information content obtained in the
course of learning, more stable and more accelerated learn-
ing can be obtained. We set
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where ���� is maximum information, and � is the param-
eter with 	 � � � �. This equation means that when infor-
mation content is larger � becomes one. As the parameter �
becomes smaller, it becomes one. The parameter � should
be usually very low, because when the parameter � is lower,
teacher information is not distorted as much1.

3 Road Classification

We present here experimental results on a road classifica-
tion problem. In this problem, networks must infer whether
a driver drives on a local road or an urban road. This prob-
lem aims to make driving as safe as possible. In the ex-
periment, we prepared 45 road photographs taken from the
drivers’ viewpoint. Figure 2 shows two examples of photos
from the total of 45 photos. Of the 45 photos, 22 photos
are classified as local roads that are relatively narrow, as
an example shown in Figure 2(a) illustrates. On the other
hand, the remaining 23 photos are those of relatively wide
urban roads, as a sample shown in Figure 2(b) illustrates.
In the experiments, we set the parameter � to 0.1, and learn-
ing was considered to be finished when relative information
increase was less than 0.001 for three consecutive epochs.
We reduced the size of these photos to 900 (	�	) pixels
to facilitate learning. Thus, we must have 900 input units.
The number of competitive units was set to four to give
the best performance. We used five-fold cross validation to
evaluate generalization performance.

As shown in Figure 3(a), information tends to be in-
creased as the Gaussian width is increased up to about
two. Then, information is rapidly decreased as the Gaus-
sian width is increased from that point. Figure 3(b) shows
training errors in a solid line and generalization errors in a
dotted line as a function of the Gaussian width �. Training
errors are decreased as the width is increased up to about
two. Then, from that point, training errors are gradually in-
creased. For generalization errors, the same tendency can
be seen. However, generalization errors move behind train-
ing errors, and generalization errors fluctuate greatly. The
generalization error reaches the lowest level of 0.2 when
� is 3 and 3.1, and generalization errors increase rapidly
from the point. Finally, we compared generalization er-
rors obtained by our method with those obtained by three
conventional methods: PNN (probabilistic networks), BP
(back-propagation) and LVQ (learning vector quantization
No.1)2, as shown in Figure 3(c). The numbers of compet-
itive units or hidden units of TDI, BP and LVQ were set
to six, four and four, respectively. These numbers was de-
termined to give the best performance in terms of general-
ization errors. Finally, we compared generalization errors
obtained by our method with those obtained by the three
conventional methods. The numbers of competitive units
or hidden units of TDI, BP and LVQ were set to four, two

1In the following experiments, the parameter � was set to 0.1 for the
first approximation.

2We used the Matlab neural networks package for PNN, BP and LVQ
for easy comparison.

and two, respectively, which were determined to give the
best performance. As shown in the figure, the error rate
obtained by PNN is 0.444, and the rate obtained by BP is
0.36. The rate obtained by LVQ is 0.33. TDIM gives the
lowest error rate, of 0.22. Experimental results show that
the teacher-directed information maximization can give the
best performance in terms of generalization performance.

4 Conclusion

In this paper, we have proposed a new type of super-
vised learning based upon information-theoretic compet-
itive learning. Teacher information is realized by using
weighted distance between input patterns and connection
weights. By using teacher information in the input layer,
distance between input patterns and connection weights is
changed. For example, when distance is large, and teacher
information suggests smaller distance, the distance is made
smaller by correlated teachers. In competition, we use
Gaussian functions of the distance. When weighted dis-
tance is smaller, competitive units tend to strongly fire. In
this way, we can incorporate teacher information in the in-
put layer, and we do not have to back-propagate error in-
formation between targets and actual outputs. Thus, this is
a very efficient supervised learning method. We have ap-
plied the method to a road classification problem. In the
problem, we have shown that our method shows the lowest
level of generalization errors.

Finally, we should mention several problems with our
method. First, we changed connection weights from corre-
lated teachers to competitive units according to information
content obtained in learning. However, more subtle adap-
tation of the connection weights may improve network per-
formance. Second, Gaussian width plays a very important
role in information maximization. Thus, more theoretical
treatment of Gaussian width will be necessary. Third, we
experimentally determined relations between information
and generalization. However, more theoretical study on the
relations will be helpful to improve generalization perfor-
mance. Though some problems remain unsolved for this
method, it is certain that the new method opens a new per-
spective in neural computing.
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