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Abstract: - Vector quantization is known as the best lossy source coding among the fixed-to-fixed coding methods 
because of its satisfactory ability of expression. Although it can represent any fixed-to-fixed code and has 
optimization methods that guarantee local optimality, its encoding and optimization require the computation that 
grows exponential to the data length. We propose an optimization method for a product coding, which avoids this 
computational explosion problem by applying a reasonable restriction to the model architecture. The performance 
of the product coding is evaluated by a simple problem. 
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1   Introduction 
In this article, we propose an optimization method for 
lossy source coding. The lossy source coding aims at 
encoding original data within the minimum code 
length while the distortion between the original and 
reproduction data is kept low. Any fixed-to-fixed 
coding can be represented by vector quantization, 
suggesting that the vector quantization has the best 
coding ability among the fixed-to-fixed coding 
schemes. Moreover, various optimization methods of 
vector quantization have been developed, such as 
generalized Lloyd algorithm (GLA) [1]. However, the 
encoding computation required by the vector 
quantization is proportional to the number of 
reproduction vectors .M  When the original data 
length is n and the data is encoded with a rate R bit 
per one data length, the number of reproduction 
vectors is Then, the encoding computation 
grows exponentially to the original data length; 
so-called “curse of dimensionality” occurs. Since the 
encoding is necessary also in optimization, the 
optimization suffers from computation explosion 
when the original data length increases.  
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 The increase of the computation originates from the 
expansion of the original data space . Product 
coding is a method that replaces the vector 
quantization by component-wise scalar quantization 
[2]. This replacement works greatly to reduce the 
space of the optimization. We introduce a compressor, 
which transforms the original data space to a feature 
space, and an expander, which transforms the feature 
space again to the original data space, such that the 
simple scalar quantizers exhibit the best. In this article, 
we propose an optimization method for the 

compressor and the expander, while the scalar 
quantizers are fixed to uniform scalar quantizers. This 
optimization process enables the product coding to 
show the best coding performance for the given data. 
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2   Architecture of Product Code 
Fig. 1 depicts the architecture of the product code we 
propose. 
 

 
 

Fig. 1.  Architecture of product code 
      
Let 1[ , , ]T

nx x n= ∈ℜx  be an original datum and 

{ }1
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ{ } , , | [ , , ] , 1, ,M k T n

nx x k∈ ≡ = ∈ℜ =x x x x x M
be a reproduction datum. First, a compressor ψ  
transforms the original data space into an 
m-dimensional feature space  such that 

 denotes the transformed 
datum of the original datum  Next, a quantizer 

[0,1]nℜ → m
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quantizes the feature vector y  into ˆ ( )= Γy y . The 
quantizer Γ  consists of m uniform scalar quantizers, 

1, , m ,Γ Γ  each of which quantizes the 
corresponding element of y  as  within ˆ ( )i i iy = Γ y



the quantizer level . The quantizer levels  
are related to the number of reproduction data 
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piece-wise one as shown in Fig. 2.  
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Fig. 2.  Quantizer  ˆ ( )i i iy y= Γ
 
Then, an expander φ  transforms the m-dimensional 
feature space into the original data space 

.  The reproduction vector  is hence 
obtained by an expander 
[0,1]m →ℜn x̂

φ  as ˆ ˆ( )φ=x y . 
 According to our product coding, the compressor and 
the expander are parameterized as ( ; )αψ θx and 

ˆ( ; )βφ θy , respectively, and parameters αθ  and βθ  
are optimized such that the original data are encoded 
with the minimum distortion under the limitation of a 
given coding length 2log M . 
 
 
3   Optimization Algorithm 
Given coding length 2log M , the cost function is 
described as  

,
min [ ( , ( ( ( ; )); )]E d
α β

α βθ θ
φ ψ θ θΓx x  ,    (1) 

where  denotes a distortion measure, which is 
always positive  excepting the case 

 if and only if .  denotes an 
expectation over the original data distribution 

ˆ( , )d x x
ˆ( , ) 0d >x x

ˆ( , ) 0d =x x ˆ=x x [ ]E ⋅
( )p x . 

Since this source distribution ( )p x  is often unknown 
in practice, the cost function (1) is approximated by 
using samples from the distribution ( )p x  as 
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where  denotes the i-th sample and  the total 
sample number. 
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 We here present an iterative procedure for 
minimizing the cost function (2).  At the first step, we 
fix the parameter αθ  and optimize the parameter .βθ  
Then, this step becomes 
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If ˆ( ; )βφ θy  is a differentiable function with respect to 

the parameter βθ , the local optimal for βθ  is 
obtained by the steepest descent or Newton’s method. 
 At the second step, we fix the parameter βθ  and 

optimize the parameter αθ . Then, this step becomes 
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Since this cost function is not differentiable due to the 
discrete function Γ , we cannot apply a gradient-based 
optimization method like the steepest descent or 
Newton’s method. So, we approximate each discrete 
function iΓ  as a continuous function: 

( )i i iy yΓ ≈ .   (5) 
The dotted line in Fig. 2 depicts the approximated 
function. This approximation provides an exact 
estimate when the quantizer level  becomes large. 
Using this approximation (5), the cost function (4) 
becomes 
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which can be optimized by a gradient-based method if 
the compressor ( ; )αψ θx  is a differentiable function 
with respect to the parameter αθ . In particular, if the 
expander φ  is an invertible function, the best 
compressor ψ  that minimizes the cost function (6) is 

the inverse of the expander φ , 1ψ φ−= , because the 
distortion takes its minimum value 

( , ( ( ; ))) ( , ) 0d dαφ ψ θ = =x x x x . 
 
 
 



4   Simulation 
We tested the performance of our product coding by 
conducting a simple simulation experiment. The test 
original data is shown in Fig. 3. 
 

 
 

Fig. 3.  The test original data (1000 samples) 
 
The test data set consisted of 10000 samples, each 
obtained by a 2  linear transformation from a 
random sample taken from a   two-dimensional 
uniform distribution. The distortion measure we use is 

a square error: 
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  The product code is parameterized as 
1( ; ) ( )f Aαψ θ −=x x ,  (7) 

ˆ ˆ( ; ) ( )Agβφ θ =y y ,     (8) 

where  is a  linear matrix and A 2 2× 1A−  is its 
inverse matrix. The functions ( )f ⋅  and  consist 
of component-wise scalar functions 
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( ), respectively.  The scalar function 1, 2i = ( )if ⋅  is 
defined as  
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and  is defined as ( )ig ⋅
ˆ ˆ ˆ( ) 2 1, (0 1)i i i ig y y y= − ≤ ≤ .   (10) 

 The compressor ( ; )αψ θx  is set to the inverse 
function of ˆ( ; )βφ θy . The parameters αθ  and βθ  to 
be optimized here correspond to the linear matrix . 
The matrix that minimizes the cost function (3) is 
analytically obtained as  where 

, , 

A

†A XZ∗ =
1[ , , ]NX = x x 1[ , , ]NZ = z z

( )( )1( )i ig f A−= Γz x  and †Z denotes the 

Moore-Penrose’s pseudo-inverse of Z . 
We compared the performance of our product code 

with the transform coding based on Karhunen-Loeve 
transformation (KLT).  In this transform coding, an 
original datum is transformed by KLT such as 

K=y x . After the transformation, the transformed 
vector y is quantized by a scalar quantizer. In the limit 
of high rate coding, the uniform quantization of 

 is optimal among the scalar quantizations [3].  
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bit allocation in the limit of high rate coding [4] is 
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this bit allocation does not necessarily give an integer 
solution, an appropriate integer bit allocation is 
explored among the adjacent integers of the obtained 
allocation solution. 

The result is shown in Fig. 4. In each figure, 
reproduction data are denoted by circles. A blank 
circle indicates that the reproduction vector encodes 
some original data, while a filled circle indicates that 
the reproduction vector encodes no original data. The 
dotted lines denote the directions of the feature 
vectors:  and . Figs. 4(a) and 4(c) show the 
results by our product coding and Figs. 4(b) and 4(d) 
show the results by the KLT-based transform coding. 
Figs. 4(a) and 4(b) show the results of 4 bit encoding, 
and  Figs. 4(c) and 4(d) show those of 6 bit encoding. 
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The title of each figure denotes the mean squared error  
(mse), i.e., the achieved cost function. As can be seen 
in Fig. 4, the product coding allocates reproduction 
vectors, which the original data are transformed 
independently into and hence the reproduction vectors 
are not wasted, while the KLT-based transform coding 
wastes them. 

 

 
 
Fig. 4. Encoding results of our product coding after the 
optimization (a) in 4 bit encode, (c) in 6 bit encode, 
and those of the KLT-based transform coding (b) in 4 
bit encode, (d) in 6 bit encode 

 
 We also compared the performance of the proposed 
product coding with that of the vector quantization 
optimized by GLA. The mse of the optimized vector 
quantization became 0.040 in 4 bit encoding or 0.010 
in 6 bit encoding. Although these were better than 
those by the proposed product coding, 0.0577 in 4 bit 
encoding and 0.0138 in 6 bit encoding, if the product 
coding was modified into exploring the nearest 
neighbors like in the vector quantization, its 
performance greatly improved; the mse became 0.041 
in 4 bit encoding or 0.010 in 6 bit encoding. These 
results indicate that the difference of the mse between 
the product coding and the vector quantization stems 
from the encoding methods. Nevertheless, our product 
coding has an advantage in the computation cost. The 
exploration of nearest neighbors used in the vector 
quantization requires the computation order of 

, while the encoding by the compressor 
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5   Concluding Remarks 
In our simple simulation, the optimized product 
coding performed better than the traditional transform 
coding. The KLT-based transform coding is optimal 
among the orthogonal transform coding when the 
source has a Gaussian distribution [5]. Although the 
KLT decomposes the original data such to have no 
correlation, the elements of the decomposed data are 
dependent on each other except for the Gaussian case. 
Our simple simulation indicated that there are better 
transformations that are not orthogonal, and our 
product coding is able to find such a transformation as 
to be an independent transformation. Product coding 
includes wide range of coding schemes such as 
shape-gain   vector quantization, traditional transform 
coding, or even tree-structured vector quantization. 
The optimization method for more complex product 
coding scheme will be discussed in our future work. 
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