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lass of the single-
omponent-update MCMC, in whi
h two or more 
omponents are never updated simultaneously. Whena 
omponent is updated in the single-
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e1 Introdu
tionThe most straightforward way to generate ran-dom numbers a

ording to the given target dis-tribution is using the table of the target distribu-tion whi
h 
onsists of probabilities for all valuesthe random variable takes. However the size ofthis table is proportional to the exponential ofthe dimension of the random variable, thereforethis straightforward way is not pra
ti
al for gen-erating large-dimensional random variables.Markov 
hain Monte Carlo(MCMC)[7℄ is a
lass of random number generators whi
h usesMarkov 
hains whose distribution 
onverges tothe target distribution.Let fX(t)g(t = 0; 1; :::) be a Markov 
hain, Vbe the range of value X(t) takes 1, p(t) be the dis-tribution of X(t), DV be the set of distributionson V . Any distribution q 2 DV 
an be repre-sented in a ve
tor form 2q = (q(x))(x 2 V ): (1)Let W (t) be the transition 3 from X(t�1) toX(t)(p(t�1) to p(t)). W (t) 
an be represented in1For the sake of simpli
ity, all random variables in thispaper take �nite dis
rete values.2In this paper, symbols for distributions or transitionsalso denote their ve
tor or matrix form.3Any transition is a linear operator DV ! DV .

a matrix formW (t) = (W (t)xy )(x; y 2 V ) (2)W (t)xy := Pr(X(t) = yjX(t�1) = x): (3)Thenp(t) = p(t�1)W (t) (4)thereforep(t) = p(0)W (1):::W (t) (5)holds.The mission of MCMC is generating X(t) forthe given target variable X(1) and its distri-bution �. In designing MCMC, the sequen
efW (t)g(t = 1; 2; :::) is designed as p(t) 
onvergesto � when t!1. Under some 
onditions, we 
anmake su
h fW (t)g without knowing the 
ompletetable of the target distribution �.In this paper, we review the Metropolis-Hastings algorithm[7℄ and its spe
ial 
ase of theGibbs sampler[3, 7℄ at �rst. Then we show someinformation geometri
al properties of the single-
omponent-update MCMC and its spe
ial 
ase ofthe Gibbs sampler.1



2 Metropolis-Hastings Algo-rithm and Gibbs Sampler2.1 Metropolis-Hastings algorithmMetropolis-Hastings algorithm[7℄ is the followingalgorithm.step0 Prepare an arbitrary sequen
e of 
ondi-tional distribution fq(t)(X 0jX)g(t = 1; 2; :::),whi
h is 
alled proposal distribution, whereX 0 is a 
andidate variable for next time. Setan arbitrary value to x. Set t = 0.step1 Generate a random number x0 a

ordingto q(t)(x0jx).step2 Set x = x0 with probability�(t)(x; x0) = min 1; �(x0)q(t)(xjx0)�(x)q(t)(x0jx) ! ; (6)whi
h is 
alled a

eptan
e probability, oth-erwise keep x as it is.step3 Set t = t+ 1 and go to step1.This algorithm simulates the Markov 
hainwhose transition matrix isW (t)xy = (q(t)(yjx)�(t)(x; y) x 6= y1�Px6=y q(t)(yjx)�(t)(x; y) x = y :(7)This transition matrix holds the following so-
alled detailed balan
e equation[7℄ for all x; y; t.�xW (t)xy = �yW (t)yx (8)Summing up eq.(8) about x, we get�W (t) = � (9)i.e. the transition by W (t) does not move �.It is known that if the Markov 
hain is weaklyergodi
[2, 5℄ then the distribution p(t) 
onvergesto � when t!1.To perform this algorithm, we do not need toknow the 
omplete table of the target distribution� but just the ratio of probability �(x0)=�(x) ineq.(6). This is the major merit of the Metropolis-Hastings algorithm.

2.2 Single-
omponent Metropolis-HastingsSingle-
omponent Metropolis-Hastings[7℄ is aspe
ial 
ase of Metropolis-Hastings algorithm. Itis used in 
ases that X is multi-dimensional i.e.X = (X0; :::;XN�1).In the single-
omponent Metropolis-Hastings,only one 
omponent is updated in ea
h transi-tion. Therefore 
andidate x0 di�er from x in one
omponent. Assume it is Xi and let X�i be thejoint variable of other 
omponents. Then for allx0�i 6= x�iq(t)(x0i; x0�ijxi; x�i) = 0: (10)There are several ways to sele
t the 
omponentupdated at time t[7℄. Let i(t) be the suÆx of the
omponent updated at time t. In this paper, weadopt sequential-update:i(t) = t mod N: (11)2.3 Gibbs samplerGibbs sampler[3, 7℄ is a spe
ial 
ase of Single-
omponent Metropolis-Hastings. Its proposaldistribution is 4q(t)(x0i; x0�ijxi; x�i) = (�(x0ijx�i) x0�i = x�i0 x0�i 6= x�i (12)therefore a

eptan
e probability is�(t)((xi; x�i); (x0i; x�i))= min�1; �(x0i; x�i)�(xijx�i)�(xi; x�i)�(x0ijx�i)�= min�1; �(x0i; x�i)�(xi; x�i)�(x�i)�(xi; x�i)�(x0i; x�i)�(x�i)�= 1: (13)It shows that the 
andidate x0 is always a

eptedin step2 in se
tion 2.1. Substituting eq.(12),(13)into eq.(7), we getW (t)(xi;x�i)(yi;y�i) = (�(yijx�i) x�i = y�i0 x�i 6= y�i (14)4In this paper, readers are expe
ted to interpret sym-bols for distributions with xi or x�i as appropriate 
ondi-tional or marginal distributions. For example�(xijx�i) = Pr(X(1)i = xijX(1)�i = x�i):



and substituting this into eq.(4), we getp(t)(y) = p(t)(yi; y�i)= Xxi;x�i p(t�1)(xi; x�i)W (t)(xi;x�i)(yi;y�i)=Xxi p(t�1)(xi; y�i)�(yijy�i)= p(t�1)(y�i)�(yijy�i)= p(t)(y�i)�(yijy�i): (15)The information about the target distribution� required to perform the Gibbs sampler is thefull 
onditional distribution[7℄ �(xijx�i) in eq.(12).3 Information Geometry ofMCMCAs we des
ribed in the introdu
tion, we 
an treata distribution as a point in a ve
tor spa
e. fp(t)gis the series of points whi
h 
onverges to �. Inthis se
tion we show some information geometri-
al properties of the MCMC whi
h updates onlyone 
omponent in ea
h transition, and show somespe
ial properties the Gibbs sampler has.3.1 Single-
omponent-update MCMCWhen i-th 
omponent is updated, other 
ompo-nents keep their value therefore the marginal dis-tribution about X�i is su

eeded:8x�i p(t)(x�i) = p(t�1)(x�i): (16)Let M(p; i) be the manifold of distributions de-�ned byM(p; i) := fq 2 DV j8x�i q(x�i) = p(x�i)g: (17)This manifold is m-
at(see appendix).The important point is that updating i-th
omponent 
an move p only along the manifoldM(p; i).3.2 Gibbs samplerFor qui
k 
onvergen
e of p(t) ! �, it is a natu-ral idea that we 
hoose the 
losest point to � onM(p(t�1); i). Some distan
e measure is requiredto determine the meaning of \
losest". We adoptthe KL-divergen
e KL(pjj�) as the distan
e mea-sure.
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Fig. 1: This �gure illustrates the movement ofsome p(t) in the distribution spa
e DV in the
ase of a single-
omponent-update MCMC. Dotsrepresent distributions and lines represent m-
atmanifoldsIn any MCMC, if we 
hoose W (t) as it satis�eseq.(9), we getKL(p(t)jj�) = KL(p(t�1)W (t)jj�W (t))� KL(p(t�1)jj�) (18)from the data pro
essing inequality(see ap-pendix). It shows that KL(p(t)jj�) de
reases 5as time goes.Now we 
onsider the following minimizationproblem minp(t)2M(p(t�1);i)KL(p(t)jj�) (19)The minimizer p(t) is the e-proje
tion(see ap-pendix) of � onto m-
at manifold M(p(t�1); i).Using the 
hain rule of KL-divergen
e(see ap-pendix) we getKL(p(t)jj�)= KL(X(t)i X(t)�i jjX(1)i X(1)�i )= KL(X(t)i X(t�1)�i jjX(1)i X(1)�i )= KL(X(t�1)�i jjX(1)�i )+KL(X(t)i jjX(1)i jX(t�1)�i ): (20)The minimization of eq.(19) is equivalent tominp(t)2M(p(t�1);i)KL(X(t)i jjX(1)i jX(t)�i ) (21)5Here \de
reases" means \at least never in
rease".



be
ause the transition by W (t) does not moveX(t)�i . From eq.(34), it is 
lear that the minimiza-tion is a
hieved when and only when8x�i KL(X(t)i jjX(1)i jx�i) = 0: (22)It is equivalent to8xi; x�i p(t)(xijx�i) = �(xijx�i): (23)Multiplying p(t)(x�i), we get the same equation aseq.(15). It implies that the Gibbs samplers transi-tion matrix W (t) moves p(t�1) to p(t) whi
h is thee-proje
tion of � onto M(p(t�1); i). The impor-tant point is that we need no information aboutp(t) to design the transition matrixW (t). In otherwords, by using Gibbs sampler's transition ma-trix, we 
an move any distribution p towards the
losest point(e-proje
tion) to � without knowingwhere p is.
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Fig. 2: This �gure illustrates the movement ofsome p(t) in the distribution spa
e DV in the 
aseof a Gibbs sampler. Dots represent distributions,lines represent m-
at manifolds and dashed linesrepresent e-geodesi
sFrom the property dis
ribed above, we 
an in-terpret the Gibbs sampler as the following algo-rithm.step0 Set an arbitrary distribution to initial p.step1 Move p to the e-proje
tion of � ontoM(p; i).step2 Go to step1.

This algorithm is a kind of greedy algorithm,be
ause p is moved to the minimizer of the 
ostKL(pjj�) in ea
h step1. In other words, p is notmoved to the optimal point in two or more move-ments but in ea
h movement. Imagine the simpli-�ed example shown in Fig.3. There are a point pand a target point � on a two dimensional plane.We 
an move p towards the east or the west forthe �rst movement and towards the north-east orthe south-west for the se
ond movement. In thisexample lines from the west to the east and linesfrom the south-west th the north-east 
orrespondto the manifoldM(p; i). If we move p to the 
los-est point to � for the �rst movement, we 
an notmake p rea
h � for the se
ond movement. It is
lear that the path written dashed lines is theoptimal path to approa
h �. �p EW NSFig. 3: This �gure illustrates the movement ofp. The path written in solid lines represents themovement of the greedy algorithm and the pathwritten in dashed lines is optimal movement toapproa
h to �Another interesting property of the Gibbs sam-pler isKL(p(t�1)jj�)= KL(p(t�1)jjp(t)) +KL(p(t)jj�); (24)whi
h is derived from Pythagorean theorem(seeappendix). It means that the divergen
e whi
hp(t) moves is equal to the divergen
e whi
h p(t)approa
hes to � in ea
h transition. Let TD(n) bethe travelling divergen
e de�ned byTD(n) := nXt=1 KL(p(t�1)jjp(t)): (25)Then we getTD(n) +KL(p(n)jj�) = KL(p(0)jj�) (26)It implies that TD(n) has upper boundKL(p(0)jj�) and if p(t) 
onverges to � when t !1, TD(t) 
onverges to KL(p(0)jj�).



4 Con
lusionMarkov 
hain Monte Carlo(MCMC) is a 
lass ofrandom number generators whi
h uses a Markov
hain whose distribution p(t) 
onverges to the tar-get distribution � when t!1.In single-
omponent-update MCMC, updatingi-th 
omponent of the multi-dimensional variableX moves X's distribution p along the m-
at man-ifold M(p; i).Gibbs sampler is one of single-
omponent-update MCMC. From the viewpoint of informa-tion geometry, the Gibbs sampler is interpretedas the following algorithm.step0 Set an arbitrary distribution to initial p.step1 Move p to the e-proje
tion of � ontoM(p; i).step2 Go to step1.This algorithm is a kind of greedy algorithm, be-
ause p is moved to the minimizer of the 
ostKL(pjj�) in ea
h step1.In the Gibbs sampler, p(t) does not trav-els in�nite divergen
e in the distribution spa
e.The divergen
e p(t) travels is less or equal toKL(p(0)jj�). If p(t) 
onverges to � when t ! 1,the traveling divergen
e 
onverges toKL(p(0)jj�).Referen
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e,Vol. PAMI-6, No. 6, 1984, pp.721-741[4℄ Amari, S., Di�erential-Geometri
al Methodsin Statisti
s, Le
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s, Vol.28. Springer-Verlag, 1985[5℄ van Laarhoven, P. J. M., Aarts, E. H. L., Sim-ulated Annealing: Theory and Appli
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ademi
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hardson, S., Spiegelhalter,D. J., Introdu
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onditional distributions,In: Gilks, W. R., Ri
hardson, S., Spiegelhal-ter, D. J.(ed.), Markov Chain Monte Carlo inPra
ti
e, Chapman & Hall, 1996, pp.1-19Appendix: KL-divergen
eLet R(X) be the range of value X takes. Fortwo random variables X;Y whi
h have the samerange, KL-divergen
e X to Y or KL-divergen
etheir distributions pX to pY is de�ned byKL(XjjY ) = KL(pX jjpY ):= Xx2R(X) pX(x) log pX(x)pY (x) : (27)KL-divergen
e is always non-negative andKL(pX jjpY ) = 0 () pX = pY : (28)Let q be the distribution of a sto
hasti
 sour
e, pbe a data's distribution and N be the number ofsamples in the data. Log-likelihood of the data
omes from the sto
hasti
 sour
e isL(pjjq) =Xx Np(x) log q(x) (29)and it takes maximum value �NH(p) when andonly when p = q, where H(p) is Shannon's en-tropy:H(p) = �Xx p(x) log p(x) (30)KL-divergen
e KL(pjjq) isKL(pjjq) = � 1NL(pjjq)�H(p) (31)Therefore the meaning ofKL(pjjq) is \biased log-likelihood of data whose distribution is q 
omesout from distribution p. The bias is taken asKL(pjjq) = 0 when p = q".



For any distribution ve
tors p; q and any tran-sition matrix W ,KL(pW jjqW ) � KL(pjjq) (32)holds. This inequality is 
alled \data pro
essinginequality".Let X;Z be random variables whi
h have thesame range and Y;W be random variables whi
hhave the same range. The following equationholds for the joint variables XY and ZW .KL(XY jjZW ) = KL(XjjZ) +KL(Y jjW jX)(33)whereKL(Y jjW jX):= Xx2R(X)Pr(X = x)KL(Y jjW jx) (34)KL(Y jjW jx) := Xy2R(Y )Pr(Y = yjX = x)� log Pr(Y = yjX = x)Pr(W = yjZ = x) : (35)Eq.(33) is 
alled \
hain rule of KL-divergen
e"and the left side of eq.(34) is 
alled \
onditionalKL-divergen
e".Let q be a distribution andM be a manifold ofdistributions.arg minp2MKL(pjjq) (36)is 
alled \e-proje
tion of q onto M"[6℄. If M hasthe following propertyp; q 2M; 0 � � � 1) �p+(1��)q 2M; (37)we 
all \M is m-
at". It is known that if M ism-
at the e-proje
tion of q onto M is unique forany distribution q.The following 
urve is 
alled e-geodesi
 from p0to p1[6℄:fqj log q(x)= (1� �) log p0(x) + t log p1(x)� log�(�);0 � � � 1g: (38)where �(t) is the term for the normalizing 
ondi-tion Px q(x) = 1:�(�) =Xx p0(x)1��p1(x)�: (39)

Let q be a distribution, M be a manifold of dis-tributions and p be the e-proje
tion of q onto M .It is known that the e-geodesi
 form q to p andM are orthogonal at p. And for any distributionr 2M , the following equation holds.KL(rjjq) = KL(rjjp) +KL(pjjq) (40)It is 
alled \Pythagorean theorem"[1℄.
pr
q M

Fig. 4: This �gure illustrates the Pythagoreantheorem: KL(rjjq) = KL(rjjp) + KL(pjjq). Mis a m-
at manifold of distributions and p is thee-proje
tion of q onto M . Dashed line is the e-geodesi
 from q to p


