Information Geometry of Gibbs Sampler
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Abstract: - This paper shows some information geometrical properties of Gibbs sampler which is one
of Markov chain Monte Carlo(MCMC) methods. The Gibbs sampler belongs to the class of the single-
component-update MCMC, in which two or more components are never updated simultaneously. When
a component is updated in the single-component-update MCMC, the chain’s distribution moves along
a m-flat manifold. In cases of the Gibbs sampler, the distribution moves to the point which minimizes
the KL divergence to the target distribution on the m-flat manifold. From this viewpoint, the Gibbs
sampler is interpreted as a greedy algorithm which minimizes the KL divergence in each update.
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1 Introduction

The most straightforward way to generate ran-
dom numbers according to the given target dis-
tribution is using the table of the target distribu-
tion which consists of probabilities for all values
the random variable takes. However the size of
this table is proportional to the exponential of
the dimension of the random variable, therefore
this straightforward way is not practical for gen-
erating large-dimensional random variables.

Markov chain Monte Carlo(MCMC)[7] is a
class of random number generators which uses
Markov chains whose distribution converges to
the target distribution.

Let {X®}(¢t = 0,1,...) be a Markov chain, V'
be the range of value X® takes ', p® be the dis-
tribution of X, Dy be the set of distributions
on V. Any distribution ¢ € Dy can be repre-

sented in a vector form 2

q=(q(x))(z € V). (1)

Let W® be the transition ® from XtV to
XO =1 to p®). W® can be represented in

'For the sake of simplicity, all random variables in this
paper take finite discrete values.

2In this paper, symbols for distributions or transitions
also denote their vector or matrix form.

3Any transition is a linear operator Dy — Dy .

a matrix form

W = W)z, yeV) (2)

Wil = Pr(X® =y XD = 1), (3)
Then

p(t) — p(t—l)W(t) (4)
therefore

p(t) — p(O)W(l)_._W(t) (5)
holds.

The mission of MCMC is generating X for
the given target variable X() and its distri-
bution 7. In designing MCMC, the sequence
{W(t)}(t =1,2,...) is designed as p¥) converges
to ™ when t — co. Under some conditions, we can
make such {W®} without knowing the complete
table of the target distribution .

In this paper, we review the Metropolis-
Hastings algorithm[7] and its special case of the
Gibbs sampler[3, 7] at first. Then we show some
information geometrical properties of the single-
component-update MCMC and its special case of
the Gibbs sampler.



2 Metropolis-Hastings Algo-
rithm and Gibbs Sampler

2.1 Metropolis-Hastings algorithm

Metropolis-Hastings algorithm[7] is the following
algorithm.

step0 Prepare an arbitrary sequence of condi-
tional distribution {¢(X'|X)}(t =1,2,...),
which is called proposal distribution, where
X' is a candidate variable for next time. Set
an arbitrary value to x. Set ¢t = 0.

stepl Generate a random number z’ according
to ¢ (2'|z).

step2 Set x = x’ with probability

: : m(a")q"M (x|2')
a®(z,z') = min (1, W) , (6)

which is called acceptance probability, oth-
erwise keep x as it is.

stepd Set t =1+ 1 and go to stepl.

This algorithm simulates the Markov chain
whose transition matrix is

o _ § 40wl (@,y) r#y
=Yy d P l)e(zy) =y
(7)

This transition matrix holds the following so-
called detailed balance equation[7] for all z,y, t.

r WL = 0 (8)

Summing up eq.(8) about z, we get
W = ¢ 9)

i.e. the transition by W does not move 7.
It is known that if the Markov chain is weakly
ergodic[2, 5] then the distribution p(® converges
to m when ¢t — oo.

To perform this algorithm, we do not need to
know the complete table of the target distribution
7 but just the ratio of probability 7(z')/m(x) in
eq.(6). This is the major merit of the Metropolis-
Hastings algorithm.

2.2 Single-component Metropolis-

Hastings

Single-component Metropolis-Hastings[7] is a
special case of Metropolis-Hastings algorithm. It
is used in cases that X is multi-dimensional i.e.
X =(Xo, o', Xn-1).

In the single-component Metropolis-Hastings,
only one component is updated in each transi-
tion. Therefore candidate ' differ from z in one
component. Assume it is X; and let X; be the
joint variable of other components. Then for all

T; # T3

q(t) (2}, 2|2y, ;) = 0. (10)

17 %g

There are several ways to select the component
updated at time ¢[7]. Let i(¢) be the suffix of the
component updated at time ¢. In this paper, we
adopt sequential-update:

i(t) =t mod N. (11)

2.3 Gibbs sampler

Gibbs sampler[3, 7] is a special case of Single-
component Metropolis-Hastings. Its proposal
distribution is *

m(zilz;)  ah = 1

0 T # ;7 (12)

g\ (}, @} s, x7) = {
therefore acceptance probability is
o (s, 27), (a}, 27))
(@i, wp)m (2] 77)
i (1, T2
(i, 27)m(

=1 (13)

It shows that the candidate z’ is always accepted
in step2 in section 2.1. Substituting eq.(12),(13)
into eq.(7), we get

(t) _ myilz) x =y

W(Ii,fl?z)(yi,yz) o - (14)
7 F Y

*In this paper, readers are expected to interpret sym-

bols for distributions with z; or x; as appropriate condi-
tional or marginal distributions. For example

m(wilw;) = Pr(X(™) = 2, X[™) = a7).



and substituting this into eq.(4), we get

P () = pV (yi, y3)
= Z p(til) (i, xi)W((;z,x;)(yi,yz)

= "V (i y)m(yilys)
= p" D (y) 7 (yily;)
= p ()7 (yilys)- (15)

The information about the target distribution
7w required to perform the Gibbs sampler is the
full conditional distribution[7] 7(z;|x;) in eq.(12).

3 Information Geometry of

MCMC

As we described in the introduction, we can treat
a distribution as a point in a vector space. {p(1)}
is the series of points which converges to m. In
this section we show some information geometri-
cal properties of the MCMC which updates only
one component in each transition, and show some
special properties the Gibbs sampler has.

3.1 Single-component-update MCMC

When i-th component is updated, other compo-
nents keep their value therefore the marginal dis-
tribution about X; is succeeded:

va; pW(az) = pl' ) (7). (16)

Let M (p,i) be the manifold of distributions de-
fined by

M(p,i) = {q € Dv|Va; q(z;) = p(x;)}. (17)

This manifold is m-flat(see appendix).
The important point is that updating i-th
component can move p only along the manifold

M(p,1).

3.2 Gibbs sampler

For quick convergence of p®) — 7, it is a natu-
ral idea that we choose the closest point to 7 on
M(p*=1 i), Some distance measure is required
to determine the meaning of “closest”. We adopt
the KL-divergence K L(p||7) as the distance mea-
sure.

o) o0

Fig. 1: This figure illustrates the movement of
some p) in the distribution space Dy in the
case of a single-component-update MCMC. Dots
represent distributions and lines represent m-flat
manifolds

In any MCMC, if we choose W) as it satisfies
eq.(9), we get

KLY ||x) = KL(pt WO« ®)
< KL(p"||r) (18)

from the data processing inequality(see ap-
pendix). It shows that KL(p®||7) decreases °
as time goes.

Now we consider the following minimization
problem

i KL(pW 19
Joein (P[) (19)

The minimizer p(®) is the e-projection(see ap-
pendix) of 7 onto m-flat manifold M (p(*~1 7).
Using the chain rule of KL-divergence(see ap-
pendix) we get

= KL(x!" V) x!>)

13
+ KL x0 1 xY)y, (20)

1

The minimization of eq.(19) is equivalent to

min  KL(XPxx®) (21
pMeM(pt—1y) ‘

SHere “decreases” means “at least never increase”.



because the transition by W®) does not move
XE.(t). From eq.(34), it is clear that the minimiza-
tion is achieved when and only when

Va; KL(X) X2 =0, (22)
It is equivalent to
Va;, z; p(t) (xi|m;) = m(x;|z;). (23)

Multiplying p()(z3), we get the same equation as
eq.(15). Tt implies that the Gibbs samplers transi-
tion matrix W moves p(t=! to p() which is the
e-projection of 7w onto M (p(*~1), ). The impor-
tant point is that we need no information about
p®) to design the transition matrix W®. In other
words, by using Gibbs sampler’s transition ma-
trix, we can move any distribution p towards the
closest point(e-projection) to m without knowing
where p is.

o)

Fig. 2: This figure illustrates the movement of
some p®) in the distribution space Dy in the case
of a Gibbs sampler. Dots represent distributions,
lines represent m-flat manifolds and dashed lines
represent e-geodesics

From the property discribed above, we can in-
terpret the Gibbs sampler as the following algo-
rithm.

step0 Set an arbitrary distribution to initial p.

stepl Move p to the e-projection of 7w onto
M (p,1).

step2 Go to stepl.

This algorithm is a kind of greedy algorithm,
because p is moved to the minimizer of the cost
K L(p||r) in each stepl. In other words, p is not
moved to the optimal point in two or more move-
ments but in each movement. Imagine the simpli-
fied example shown in Fig.3. There are a point p
and a target point 7 on a two dimensional plane.
We can move p towards the east or the west for
the first movement and towards the north-east or
the south-west for the second movement. In this
example lines from the west to the east and lines
from the south-west th the north-east correspond
to the manifold M (p,i). If we move p to the clos-
est point to 7 for the first movement, we can not
make p reach 7 for the second movement. It is
clear that the path written dashed lines is the
optimal path to approach .

{ﬂ-

Fig. 3: This figure illustrates the movement of
p. The path written in solid lines represents the
movement of the greedy algorithm and the path
written in dashed lines is optimal movement to
approach to m

Another interesting property of the Gibbs sam-
pler is

KL V]|r)
= KLp" V[p") + KLpW||r), (24)
which is derived from Pythagorean theorem(see
appendix). It means that the divergence which
p) moves is equal to the divergence which p()

approaches to 7 in each transition. Let 7D be
the travelling divergence defined by

TD™ = Y KL |p?), (25)
t=1

Then we get
TD™ + KL(p™||x) = KLGY|7)  (26)

It implies that 7D has upper bound
KL(p©||x) and if p*) converges to 7 when ¢t —
0o, TD® converges to K L(p'9||x).



4 Conclusion

Markov chain Monte Carlo(MCMC) is a class of
random number generators which uses a Markov
chain whose distribution p{* converges to the tar-
get distribution 7 when ¢ — oc.

In single-component-update MCMC, updating
1-th component of the multi-dimensional variable
X moves X’s distribution p along the m-flat man-
ifold M (p, ).

Gibbs sampler is one of single-component-
update MCMC. From the viewpoint of informa-
tion geometry, the Gibbs sampler is interpreted
as the following algorithm.

step0 Set an arbitrary distribution to initial p.

stepl Move p to the e-projection of m onto
M(p,1).

step2 Go to stepl.

This algorithm is a kind of greedy algorithm, be-
cause p is moved to the minimizer of the cost
K L(p||m) in each stepl.

In the Gibbs sampler, p¥) does not trav-
els infinite divergence in the distribution space.
The divergence p®) travels is less or equal to
KL(pO||x). If p® converges to m when ¢t — oo,
the traveling divergence converges to K L(p(®||r).
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Appendix: KL-divergence

Let R(X) be the range of value X takes. For
two random variables X,Y which have the same
range, KL-divergence X to Y or KL-divergence
their distributions px to py is defined by

KLX|Y) = KL(px|lpy)
= Y px@log Y o)
TER(X) Py (@)
KL-divergence is always non-negative and
KL(px|lpy) =0 < px =py. (28)

Let g be the distribution of a stochastic source, p
be a data’s distribution and N be the number of
samples in the data. Log-likelihood of the data
comes from the stochastic source is

L(pllg) = ZNp )log q(x) (29)

and it takes maximum value —N H (p) when and
only when p = ¢, where H(p) is Shannon’s en-

tropy:

Zp ) log p(x (30)
KL-divergence K L(p||q) is

1
KL(plla) = —5L(plla) — H(p) (31)
Therefore the meaning of K L(p||q) is “biased log-
likelihood of data whose distribution is ¢ comes
out from distribution p. The bias is taken as
K L(pllg) =0 when p =g¢”.



For any distribution vectors p,q and any tran-
sition matrix W,

KL(pW||gW) < KL(pl|q) (32)

holds. This inequality is called “data processing
inequality”.

Let X, Z be random variables which have the
same range and Y, W be random variables which
have the same range. The following equation
holds for the joint variables XY and ZW.

KL(XY||ZW) = KL(X||Z) + KL(Y||W|X)
(33)
where
KL(Y[[W|X)

= Y Pr(X =a2)KL(Y|Wlz) (34)
TER(X)

Eq.(33) is called “chain rule of KL-divergence”
and the left side of eq.(34) is called “conditional
KL-divergence”.

Let ¢ be a distribution and M be a manifold of
distributions.

arg min K L(p||q) (36)
peEM

is called “e-projection of ¢ onto M”[6]. If M has
the following property

p,qg € M,0<A<1= Ap+(1—XA)ge M, (37)

we call “M is m-flat”. It is known that if M is
m-flat the e-projection of ¢ onto M is unique for
any distribution q.

The following curve is called e-geodesic from pg
to p1[6]:

{allog q(z)
= (1 = A)logpo(z) + tlog p1(z) — log ¢(A),
0<A<1). (38)

where ¢(t) is the term for the normalizing condi-
tion ) q(z) = 1:

¢(A) =D po(2)' pi(a). (39)

Let g be a distribution, M be a manifold of dis-
tributions and p be the e-projection of ¢ onto M.
It is known that the e-geodesic form ¢ to p and
M are orthogonal at p. And for any distribution
r € M, the following equation holds.

KL(rllq) = KL(r||p) + K L(pl[q) (40)

It is called “Pythagorean theorem”[1].

Fig. 4: This figure illustrates the Pythagorean
theorem: KL(r||q) = KL(r||p) + KL(p|lq). M
is a m-flat manifold of distributions and p is the
e-projection of g onto M. Dashed line is the e-
geodesic from ¢ to p



