
Information Geometry of Gibbs SamplerKazuya TakabatakeNeurosiene Researh InstituteAIST Central 2, Umezono 1-1-1, TsukubaJAPAN 305-8568k.takabatake�aist.go.jpAbstrat: - This paper shows some information geometrial properties of Gibbs sampler whih is oneof Markov hain Monte Carlo(MCMC) methods. The Gibbs sampler belongs to the lass of the single-omponent-update MCMC, in whih two or more omponents are never updated simultaneously. Whena omponent is updated in the single-omponent-update MCMC, the hain's distribution moves alonga m-at manifold. In ases of the Gibbs sampler, the distribution moves to the point whih minimizesthe KL divergene to the target distribution on the m-at manifold. From this viewpoint, the Gibbssampler is interpreted as a greedy algorithm whih minimizes the KL divergene in eah update.Key-Words: - Gibbs sampler, Markov hain Monte Carlo, information geometry, KL-divergene, greedyalgorithms, onvergene1 IntrodutionThe most straightforward way to generate ran-dom numbers aording to the given target dis-tribution is using the table of the target distribu-tion whih onsists of probabilities for all valuesthe random variable takes. However the size ofthis table is proportional to the exponential ofthe dimension of the random variable, thereforethis straightforward way is not pratial for gen-erating large-dimensional random variables.Markov hain Monte Carlo(MCMC)[7℄ is alass of random number generators whih usesMarkov hains whose distribution onverges tothe target distribution.Let fX(t)g(t = 0; 1; :::) be a Markov hain, Vbe the range of value X(t) takes 1, p(t) be the dis-tribution of X(t), DV be the set of distributionson V . Any distribution q 2 DV an be repre-sented in a vetor form 2q = (q(x))(x 2 V ): (1)Let W (t) be the transition 3 from X(t�1) toX(t)(p(t�1) to p(t)). W (t) an be represented in1For the sake of simpliity, all random variables in thispaper take �nite disrete values.2In this paper, symbols for distributions or transitionsalso denote their vetor or matrix form.3Any transition is a linear operator DV ! DV .

a matrix formW (t) = (W (t)xy )(x; y 2 V ) (2)W (t)xy := Pr(X(t) = yjX(t�1) = x): (3)Thenp(t) = p(t�1)W (t) (4)thereforep(t) = p(0)W (1):::W (t) (5)holds.The mission of MCMC is generating X(t) forthe given target variable X(1) and its distri-bution �. In designing MCMC, the sequenefW (t)g(t = 1; 2; :::) is designed as p(t) onvergesto � when t!1. Under some onditions, we anmake suh fW (t)g without knowing the ompletetable of the target distribution �.In this paper, we review the Metropolis-Hastings algorithm[7℄ and its speial ase of theGibbs sampler[3, 7℄ at �rst. Then we show someinformation geometrial properties of the single-omponent-update MCMC and its speial ase ofthe Gibbs sampler.1



2 Metropolis-Hastings Algo-rithm and Gibbs Sampler2.1 Metropolis-Hastings algorithmMetropolis-Hastings algorithm[7℄ is the followingalgorithm.step0 Prepare an arbitrary sequene of ondi-tional distribution fq(t)(X 0jX)g(t = 1; 2; :::),whih is alled proposal distribution, whereX 0 is a andidate variable for next time. Setan arbitrary value to x. Set t = 0.step1 Generate a random number x0 aordingto q(t)(x0jx).step2 Set x = x0 with probability�(t)(x; x0) = min 1; �(x0)q(t)(xjx0)�(x)q(t)(x0jx) ! ; (6)whih is alled aeptane probability, oth-erwise keep x as it is.step3 Set t = t+ 1 and go to step1.This algorithm simulates the Markov hainwhose transition matrix isW (t)xy = (q(t)(yjx)�(t)(x; y) x 6= y1�Px6=y q(t)(yjx)�(t)(x; y) x = y :(7)This transition matrix holds the following so-alled detailed balane equation[7℄ for all x; y; t.�xW (t)xy = �yW (t)yx (8)Summing up eq.(8) about x, we get�W (t) = � (9)i.e. the transition by W (t) does not move �.It is known that if the Markov hain is weaklyergodi[2, 5℄ then the distribution p(t) onvergesto � when t!1.To perform this algorithm, we do not need toknow the omplete table of the target distribution� but just the ratio of probability �(x0)=�(x) ineq.(6). This is the major merit of the Metropolis-Hastings algorithm.

2.2 Single-omponent Metropolis-HastingsSingle-omponent Metropolis-Hastings[7℄ is aspeial ase of Metropolis-Hastings algorithm. Itis used in ases that X is multi-dimensional i.e.X = (X0; :::;XN�1).In the single-omponent Metropolis-Hastings,only one omponent is updated in eah transi-tion. Therefore andidate x0 di�er from x in oneomponent. Assume it is Xi and let X�i be thejoint variable of other omponents. Then for allx0�i 6= x�iq(t)(x0i; x0�ijxi; x�i) = 0: (10)There are several ways to selet the omponentupdated at time t[7℄. Let i(t) be the suÆx of theomponent updated at time t. In this paper, weadopt sequential-update:i(t) = t mod N: (11)2.3 Gibbs samplerGibbs sampler[3, 7℄ is a speial ase of Single-omponent Metropolis-Hastings. Its proposaldistribution is 4q(t)(x0i; x0�ijxi; x�i) = (�(x0ijx�i) x0�i = x�i0 x0�i 6= x�i (12)therefore aeptane probability is�(t)((xi; x�i); (x0i; x�i))= min�1; �(x0i; x�i)�(xijx�i)�(xi; x�i)�(x0ijx�i)�= min�1; �(x0i; x�i)�(xi; x�i)�(x�i)�(xi; x�i)�(x0i; x�i)�(x�i)�= 1: (13)It shows that the andidate x0 is always aeptedin step2 in setion 2.1. Substituting eq.(12),(13)into eq.(7), we getW (t)(xi;x�i)(yi;y�i) = (�(yijx�i) x�i = y�i0 x�i 6= y�i (14)4In this paper, readers are expeted to interpret sym-bols for distributions with xi or x�i as appropriate ondi-tional or marginal distributions. For example�(xijx�i) = Pr(X(1)i = xijX(1)�i = x�i):



and substituting this into eq.(4), we getp(t)(y) = p(t)(yi; y�i)= Xxi;x�i p(t�1)(xi; x�i)W (t)(xi;x�i)(yi;y�i)=Xxi p(t�1)(xi; y�i)�(yijy�i)= p(t�1)(y�i)�(yijy�i)= p(t)(y�i)�(yijy�i): (15)The information about the target distribution� required to perform the Gibbs sampler is thefull onditional distribution[7℄ �(xijx�i) in eq.(12).3 Information Geometry ofMCMCAs we desribed in the introdution, we an treata distribution as a point in a vetor spae. fp(t)gis the series of points whih onverges to �. Inthis setion we show some information geometri-al properties of the MCMC whih updates onlyone omponent in eah transition, and show somespeial properties the Gibbs sampler has.3.1 Single-omponent-update MCMCWhen i-th omponent is updated, other ompo-nents keep their value therefore the marginal dis-tribution about X�i is sueeded:8x�i p(t)(x�i) = p(t�1)(x�i): (16)Let M(p; i) be the manifold of distributions de-�ned byM(p; i) := fq 2 DV j8x�i q(x�i) = p(x�i)g: (17)This manifold is m-at(see appendix).The important point is that updating i-thomponent an move p only along the manifoldM(p; i).3.2 Gibbs samplerFor quik onvergene of p(t) ! �, it is a natu-ral idea that we hoose the losest point to � onM(p(t�1); i). Some distane measure is requiredto determine the meaning of \losest". We adoptthe KL-divergene KL(pjj�) as the distane mea-sure.
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Fig. 1: This �gure illustrates the movement ofsome p(t) in the distribution spae DV in thease of a single-omponent-update MCMC. Dotsrepresent distributions and lines represent m-atmanifoldsIn any MCMC, if we hoose W (t) as it satis�eseq.(9), we getKL(p(t)jj�) = KL(p(t�1)W (t)jj�W (t))� KL(p(t�1)jj�) (18)from the data proessing inequality(see ap-pendix). It shows that KL(p(t)jj�) dereases 5as time goes.Now we onsider the following minimizationproblem minp(t)2M(p(t�1);i)KL(p(t)jj�) (19)The minimizer p(t) is the e-projetion(see ap-pendix) of � onto m-at manifold M(p(t�1); i).Using the hain rule of KL-divergene(see ap-pendix) we getKL(p(t)jj�)= KL(X(t)i X(t)�i jjX(1)i X(1)�i )= KL(X(t)i X(t�1)�i jjX(1)i X(1)�i )= KL(X(t�1)�i jjX(1)�i )+KL(X(t)i jjX(1)i jX(t�1)�i ): (20)The minimization of eq.(19) is equivalent tominp(t)2M(p(t�1);i)KL(X(t)i jjX(1)i jX(t)�i ) (21)5Here \dereases" means \at least never inrease".



beause the transition by W (t) does not moveX(t)�i . From eq.(34), it is lear that the minimiza-tion is ahieved when and only when8x�i KL(X(t)i jjX(1)i jx�i) = 0: (22)It is equivalent to8xi; x�i p(t)(xijx�i) = �(xijx�i): (23)Multiplying p(t)(x�i), we get the same equation aseq.(15). It implies that the Gibbs samplers transi-tion matrix W (t) moves p(t�1) to p(t) whih is thee-projetion of � onto M(p(t�1); i). The impor-tant point is that we need no information aboutp(t) to design the transition matrixW (t). In otherwords, by using Gibbs sampler's transition ma-trix, we an move any distribution p towards thelosest point(e-projetion) to � without knowingwhere p is.
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Fig. 2: This �gure illustrates the movement ofsome p(t) in the distribution spae DV in the aseof a Gibbs sampler. Dots represent distributions,lines represent m-at manifolds and dashed linesrepresent e-geodesisFrom the property disribed above, we an in-terpret the Gibbs sampler as the following algo-rithm.step0 Set an arbitrary distribution to initial p.step1 Move p to the e-projetion of � ontoM(p; i).step2 Go to step1.

This algorithm is a kind of greedy algorithm,beause p is moved to the minimizer of the ostKL(pjj�) in eah step1. In other words, p is notmoved to the optimal point in two or more move-ments but in eah movement. Imagine the simpli-�ed example shown in Fig.3. There are a point pand a target point � on a two dimensional plane.We an move p towards the east or the west forthe �rst movement and towards the north-east orthe south-west for the seond movement. In thisexample lines from the west to the east and linesfrom the south-west th the north-east orrespondto the manifoldM(p; i). If we move p to the los-est point to � for the �rst movement, we an notmake p reah � for the seond movement. It islear that the path written dashed lines is theoptimal path to approah �. �p EW NSFig. 3: This �gure illustrates the movement ofp. The path written in solid lines represents themovement of the greedy algorithm and the pathwritten in dashed lines is optimal movement toapproah to �Another interesting property of the Gibbs sam-pler isKL(p(t�1)jj�)= KL(p(t�1)jjp(t)) +KL(p(t)jj�); (24)whih is derived from Pythagorean theorem(seeappendix). It means that the divergene whihp(t) moves is equal to the divergene whih p(t)approahes to � in eah transition. Let TD(n) bethe travelling divergene de�ned byTD(n) := nXt=1 KL(p(t�1)jjp(t)): (25)Then we getTD(n) +KL(p(n)jj�) = KL(p(0)jj�) (26)It implies that TD(n) has upper boundKL(p(0)jj�) and if p(t) onverges to � when t !1, TD(t) onverges to KL(p(0)jj�).



4 ConlusionMarkov hain Monte Carlo(MCMC) is a lass ofrandom number generators whih uses a Markovhain whose distribution p(t) onverges to the tar-get distribution � when t!1.In single-omponent-update MCMC, updatingi-th omponent of the multi-dimensional variableX moves X's distribution p along the m-at man-ifold M(p; i).Gibbs sampler is one of single-omponent-update MCMC. From the viewpoint of informa-tion geometry, the Gibbs sampler is interpretedas the following algorithm.step0 Set an arbitrary distribution to initial p.step1 Move p to the e-projetion of � ontoM(p; i).step2 Go to step1.This algorithm is a kind of greedy algorithm, be-ause p is moved to the minimizer of the ostKL(pjj�) in eah step1.In the Gibbs sampler, p(t) does not trav-els in�nite divergene in the distribution spae.The divergene p(t) travels is less or equal toKL(p(0)jj�). If p(t) onverges to � when t ! 1,the traveling divergene onverges toKL(p(0)jj�).Referenes:[1℄ Csisz�ar, I., K�orner, J., Information Theory:Coding Theorems for Disrete Memoryless Sys-tems, Aademi Press, 1981[2℄ Seneta, E., Non-negative Matries andMarkov Chains, Seond Edition, Springer-Verlag, 1981[3℄ Geman, S., Geman, D., Stohasti Relax-ation, Gibbs Distributions, and the BayesianRestoration of Images, IEEE Transation onPattern Analysis and Mahine Intelligene,Vol. PAMI-6, No. 6, 1984, pp.721-741[4℄ Amari, S., Di�erential-Geometrial Methodsin Statistis, Leture Notes in Statistis, Vol.28. Springer-Verlag, 1985[5℄ van Laarhoven, P. J. M., Aarts, E. H. L., Sim-ulated Annealing: Theory and Appliations,Kluwer Aademi Publishers, 1987

[6℄ Amari, S., Information Geometry of the EMand em Algorithms for Neural Networks, Neu-ral Networks, Vol. 8, No. 9, 1995, pp.1379-1408[7℄ Gilks, W. R., Rihardson, S., Spiegelhalter,D. J., Introduing Markov hain Monte Carlo,In: Gilks, W. R., Rihardson, S., Spiegelhal-ter, D. J.(ed.), Markov Chain Monte Carlo inPratie, Chapman & Hall, 1996, pp.1-19[8℄ Gilks, W. R.: Full onditional distributions,In: Gilks, W. R., Rihardson, S., Spiegelhal-ter, D. J.(ed.), Markov Chain Monte Carlo inPratie, Chapman & Hall, 1996, pp.1-19Appendix: KL-divergeneLet R(X) be the range of value X takes. Fortwo random variables X;Y whih have the samerange, KL-divergene X to Y or KL-divergenetheir distributions pX to pY is de�ned byKL(XjjY ) = KL(pX jjpY ):= Xx2R(X) pX(x) log pX(x)pY (x) : (27)KL-divergene is always non-negative andKL(pX jjpY ) = 0 () pX = pY : (28)Let q be the distribution of a stohasti soure, pbe a data's distribution and N be the number ofsamples in the data. Log-likelihood of the dataomes from the stohasti soure isL(pjjq) =Xx Np(x) log q(x) (29)and it takes maximum value �NH(p) when andonly when p = q, where H(p) is Shannon's en-tropy:H(p) = �Xx p(x) log p(x) (30)KL-divergene KL(pjjq) isKL(pjjq) = � 1NL(pjjq)�H(p) (31)Therefore the meaning ofKL(pjjq) is \biased log-likelihood of data whose distribution is q omesout from distribution p. The bias is taken asKL(pjjq) = 0 when p = q".



For any distribution vetors p; q and any tran-sition matrix W ,KL(pW jjqW ) � KL(pjjq) (32)holds. This inequality is alled \data proessinginequality".Let X;Z be random variables whih have thesame range and Y;W be random variables whihhave the same range. The following equationholds for the joint variables XY and ZW .KL(XY jjZW ) = KL(XjjZ) +KL(Y jjW jX)(33)whereKL(Y jjW jX):= Xx2R(X)Pr(X = x)KL(Y jjW jx) (34)KL(Y jjW jx) := Xy2R(Y )Pr(Y = yjX = x)� log Pr(Y = yjX = x)Pr(W = yjZ = x) : (35)Eq.(33) is alled \hain rule of KL-divergene"and the left side of eq.(34) is alled \onditionalKL-divergene".Let q be a distribution andM be a manifold ofdistributions.arg minp2MKL(pjjq) (36)is alled \e-projetion of q onto M"[6℄. If M hasthe following propertyp; q 2M; 0 � � � 1) �p+(1��)q 2M; (37)we all \M is m-at". It is known that if M ism-at the e-projetion of q onto M is unique forany distribution q.The following urve is alled e-geodesi from p0to p1[6℄:fqj log q(x)= (1� �) log p0(x) + t log p1(x)� log�(�);0 � � � 1g: (38)where �(t) is the term for the normalizing ondi-tion Px q(x) = 1:�(�) =Xx p0(x)1��p1(x)�: (39)

Let q be a distribution, M be a manifold of dis-tributions and p be the e-projetion of q onto M .It is known that the e-geodesi form q to p andM are orthogonal at p. And for any distributionr 2M , the following equation holds.KL(rjjq) = KL(rjjp) +KL(pjjq) (40)It is alled \Pythagorean theorem"[1℄.
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Fig. 4: This �gure illustrates the Pythagoreantheorem: KL(rjjq) = KL(rjjp) + KL(pjjq). Mis a m-at manifold of distributions and p is thee-projetion of q onto M . Dashed line is the e-geodesi from q to p


